Polynomial complexity classes over real algebras with nilpotent elements

Alexander N. Rybalov, Omsk Branch IM SB RAS

> доказал теорему ферма тчк икс в степени эн переносим
> в правую часть тчк подробности письмом тчк

Generalized Computability and Complexity

- Blum, Shub and Smale, 1989: computability over rings (BSSmodel).
- Ashaev, Belyaev and Myasnikov, 1992: computability over the list superstructure (ABM-model).
- Hemmerling, 1996: computability and complexity over algebraic structures (based on BSS-model).
- Rybalov, 2002: complexity over the list superstructure (based on ABM-model).

BSS-model (Hemmerling version)

Computational model - a generalization of Turing machine to a ring $\langle R,+, \times, 1,0\rangle$. BSS-machine consists of:

- an finite tape, every cell of the tape contains an element from R,
- a finite number of pointers p_{i} on cells of the tape,
- a program consisting of finite number of numerated commands

BSS-program

- $\operatorname{right}\left(p_{i}\right)\left(\operatorname{left}\left(p_{i}\right)\right)$ - to move pointer p_{i} to the right (left) cell,
- $p_{i}=p_{j} \circ p_{k}(\circ \in\{+, \times\})$ - to write in cell p_{i} the sum or the product of cells p_{j} and p_{k},
- $p_{i}=0, p_{i}=1$ - to write a constant in cell p_{i},
- stop - the halting command,
- if $p_{i}=p_{j}$ goto q - if cells p_{i} and p_{j} contain the same element then go to command q, else to the next command,
- $\operatorname{lapp}\left(p_{i}\right)$ - to append a cell at left from p_{i} (if p_{i} points on the most left cell),
- $\operatorname{rapp}\left(p_{i}\right)$ - to append a cell at right from p_{i} (if p_{i} points on the most right cell),
- $\operatorname{del}\left(p_{i}\right)$ - to delete cell p_{i} (if p_{i} points on one of end cells), after that p_{j} (and all other pointers pointing on this cell) will point on adjacent cell.

BSS-model

BSS-machine M computes some function

$$
f_{M}: R^{*} \rightarrow R^{*}
$$

in the following way. The input string w of elements from R is written on the starting tape. After start numerated commands of M are performed one-by-one (goto command may change the order) until the stop command. After halting the string $f_{M}(w)$ is written on the tape. If M is not halting then $f_{M}(w)$ is not defined.

Having this definition we can develop a computability and complexity theory over R.

The size of input w is just the length $|w|$.

Some Features

- If ring R is binary field $\langle 0,1,+, \times, /\rangle$ then we have the classical Turing computability over binary strings.
- Example of recursive set over field \mathbb{C} :

$$
\left(a_{1}, \ldots, a_{n}\right): \exists I \subseteq\{1, \ldots, n\} \sum_{i \in I} a_{i}=0
$$

- Examples of not-recursive sets over field \mathbb{C} : integers \mathbb{Z}, Mandelbrot and Julia fractals (Blum, Shub, Smale).

NP-complete problems

Satisfability problem over ring R :

$$
\begin{aligned}
& \left(f_{1}(\bar{x}), \ldots, f_{n}(\bar{x})\right): \exists \bar{a} \in R^{*} \\
& f_{1}(\bar{a})=0 \wedge \ldots \wedge f_{n}(\bar{a})=0
\end{aligned}
$$

is $N P$-complete (Blum, Shub, Smale).

List superstructure

Introduced by Goncharov and Sviridenko. $\left\langle H L(A), \sigma^{*}\right\rangle$ - list superstructure of structure $\langle A, \sigma\rangle$. Here $H L(A)$ is

$$
\begin{gathered}
L_{0}=A, L_{n+1}=L_{n} \cup F\left(L_{n}\right) \\
H L(A)=\cup_{n=0}^{\infty} L_{n},
\end{gathered}
$$

where $F(B)$ is the set of all finite lists over B.

$$
\sigma^{*}=\sigma \cup\left\{\text { head }^{(1)}, \text { tail }^{(1)}, \text { cons }^{(2)}, \text { nil }^{(}\right\}
$$

- $\operatorname{tail}\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)=\left\langle a_{2}, \ldots, a_{n}\right\rangle, \quad \operatorname{head}\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right)=a_{1}$
- $\operatorname{cons}\left(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle, b\right)=\left\langle a_{1}, a_{2}, \ldots, a_{n}, b\right\rangle, \quad$ nil $=\langle \rangle$

ABM-model

Machine M has a finite number of registers R_{1}, \ldots, R_{n}, in which elements of $H L(A)$ are stored. Program of machine consists of commands of the types:

- $R_{i}=R_{j}$
- $R_{i}=c$, where c is a constant from σ^{*}
- $R_{i}=f\left(R_{i_{1}}, \ldots, R_{i_{k}}\right)$, where f is a function from σ^{*}
- if $P\left(R_{i_{1}}, \ldots, R_{i_{k}}\right)$ goto q, where P is a predicate from σ or equality

ABM-model

The first register R_{1} contains initial data. The commands are executed in a natural way. After halting R_{1} contains the result. So machine M computes a function

$$
f_{M}: H L(A) \rightarrow H L(A)
$$

Theories of computability and complexity were developed in these frameworks. The size of input is the size of list defined as

$$
\begin{aligned}
& \operatorname{size}(a)=1, a \in A \\
& \operatorname{size}\left(\left\langle a_{1}, \ldots, a_{k}\right\rangle\right)=\sum_{i=1}^{k} \operatorname{size}\left(a_{i}\right)
\end{aligned}
$$

Some Features

- For functions $f: A^{*} \rightarrow A^{*}$ ABM-model is equivalent to BSS-model (Rybalov).
- Interesting types of sets (recursive, halting, output) have a natural description in so-called logic of computable disjunctions (Ashaev, Belyaev, Myasnikov).
- A theory of $N P$-completeness was developed (Rybalov).

Polynomial Classes over Structures

$\mathfrak{A}=\langle A, \sigma\rangle$ - some structure.
$P_{\mathfrak{A}}$ - class of subsets of A^{*}, recognized in polynomial time by deterministic BSS-machines.
$D N P_{\mathfrak{A}}$ - class of subsets of A^{*}, recognized in polynomial time by BSS-machines with nondeterministic branches.

$$
\text { if ? goto } q
$$

$N P_{\mathfrak{A}}$ - class of subsets of A^{*}, recognized in polynomial time by BSSmachines with nondeterministic guesses.

$$
p_{i}=\text { guess }
$$

P versus NP

Lemma. $P_{\mathfrak{A}} \subseteq D N P_{\mathfrak{A}} \subseteq N P_{\mathfrak{A}}$
Question. Is $P_{\mathfrak{A}}=D N P_{\mathfrak{A}}$? Is $D N P_{\mathfrak{A}}=N P_{\mathfrak{A}}$?

P versus NP over Some Structures

- $D N P=N P$ over any finite structure and $P v s N P$ is equivalent to classical PvsNP.
- $P \neq D N P$ over $\langle\mathbb{R},+\rangle$ (Meer, 1992).
- $P \neq D N P$ over $\langle\mathbb{R},+, \leq\rangle \Leftrightarrow P \neq N P$ in classics (Koiran, 1996).
- $P \neq D N P$ over infinite abelian groups (Gassner, 2002).
- $D N P \neq N P$ over of integers $\langle\mathbb{Z},+,-, \times, 0,1\rangle$ (Hemmerling, 1995).

P versus NP over Some Structures

- $P \neq D N P$ over infinite Boolean algebras (Prunescu, 2003).
- $P \neq D N P$ over real and complex matrix rings (Rybalov, 2004).
- $D N P \neq N P$ over unordered field \mathbb{R} (BSS + Cucker 199?).
- $D N P \neq N P$ over field \mathbb{Q} (Malajovich, 199?).
- Hemmerling in 2005 constructed a structure where $P=N P$.

P versus NP over \mathbb{R} and \mathbb{C}

Question. Is $P \neq D N P$ and $D N P \neq N P$ over $\langle\mathbb{C},+,-, \times, /, 0,1\rangle ?$

Question. Is $P \neq D N P$ and $D N P \neq N P$ over $\langle\mathbb{R},+,-, \times, /, \leq, 0,1\rangle ?$

- If $B P P=P$ then classical $P=N P$ implies $P=N P$ over \mathbb{R} (BSS, 199?)
- Oracles: $P^{\mathbb{Z}} \neq D N P^{\mathbb{Z}}$ over $\mathbb{C}($ Rybalov,2004)

$P \neq D N P$ over $\langle\mathbb{R},+\rangle$

Theorem. $P \neq D N P$ over $\langle\mathbb{R},+\rangle$
We prove that the following set from $D N P$

$$
N U L L S A C K=\left\{\left(a_{1}, \ldots, a_{n}\right): \exists I \subseteq\{1, \ldots, n\} \sum_{i \in I} a_{i}=0\right\}
$$

does not belong to P. Suppose there is a BSS-machine M, recognized $N U L L S A C K$ with polynomial time bound $p(n)$. Let's try to cheat M.

How to cheat polynomial machines?

- Fix a size n such that $2^{n}-1>p(n)$
- Put $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ to M with a_{i} linearly independent over \mathbb{Z}
- $\alpha \notin N U L L S A C K$ and M outputs NO
- In computation on αM has $N \leq p(n)<2^{n}-1$ tests of type

$$
l_{i}\left(a_{1}, \ldots, a_{n}\right)=0, i=1, \ldots, N \quad(*)
$$

where l is a linear combination with integer coefficients. All nontrivial tests give inequations because a_{i} are independent over \mathbb{Z}.

How to cheat polynomial machines?

- Now put to M input $\beta=\left(b_{1}, \ldots, b_{n}\right)$ such that $\beta \in N U L L S A C K$ but for all non-trivial tests in $(*) l_{i}(\beta) \neq 0$.
- It's possible because $N<2^{n}-1$ planes

$$
l_{i}\left(x_{1}, \ldots, x_{n}\right)=0, i=1, \ldots, N
$$

cannot cover $2^{n}-1$ planes of NULLSACK

$$
\sum_{i \in I} x_{i}=0, I \subseteq\{1, \ldots, n\}
$$

So M on β has the same computational path as on α and outputs NO!

$P \neq D N P$ over algebras with nilpotent elements

Theorem. $P \neq D N P$ over \mathcal{A}, where \mathcal{A} is a real algebra with nilpotent elements.

Theorem. $P \neq D N P$ over \mathcal{A}, where \mathcal{A} is an algebra over field of characteristics 0 with nilpotent elements.

$P \neq D N P$ over ring $\langle\mathbb{R},+,-, \times, 0,1\rangle$

A problem with similar scheme of proof for ring \mathbb{R} : surfaces

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, i=1, \ldots, N<2^{n}-1
$$

with polynomials f_{i} can cover $N U L L S A C K$. Actually one surface

$$
F(\bar{x})=\prod_{I \subseteq\{1, \ldots, n\}}\left(\sum_{i \in I} x_{i}\right)=0
$$

covers NULLSACK.

But can a polynomial machine get such "big"polynomial F in its computation?

Algebraic Circuits

Algebraic circuit C of variables x_{1}, \ldots, x_{n} is a finite sequence of assignments of type

$$
y_{i}=u_{j} \circ u_{k}, \circ \in\{+,-, \times\}
$$

where u_{j}, u_{k} is either some input variable x_{j}, or some previous intermediate variable $y_{j}, j<i$, or constant 1 .

Circuit C computes a polynomial of variables x_{1}, \ldots, x_{n} with integer coefficients. The size $\tau(C)$ of C is the number of assignments.

$$
\tau(f)=\min _{C}\{\tau(C): C \text { computes } \mathrm{f}\}
$$

An Example

A polynomial of very big power can be computed by a small circuit. Consider a sequence of polynomials $f_{n}(x)=x^{2^{n}}$. It is easy to see that it is computed by the following circuit

$$
y_{1}=x \cdot x, y_{2}=y_{1} \cdot y_{1}, \ldots, y_{n}=y_{n-1} \cdot y_{n-1}
$$

The size of this circuit n is logarithmic of the power of polynomial $x^{2^{n}}$. Moreover it is a well-known fact that any polynomial x^{n} can be computed by a circuit of size $O(\operatorname{logn})$ - corresponding algorithm is used for encoding and decoding in RSA.

Algebraic Circuits and P vs NP over ring \mathbb{R}

Shub-Smale tau conjecture: There exists a constant $C>0$ such that any polynomial with integer coefficients $f(x)$

$$
\tau(f)>\operatorname{Int}(f)^{C}
$$

where $\operatorname{Int}(f)$ is the number of different integer roots of $f(x)$.
Theorem (BBS + Cucker). If Shub-Smale tau conjecture is true then $P \neq D N P$ over \mathbb{R}.

Algebraic Circuits and P vs NP over ring \mathbb{R}

Suppose some polynomial BSS-machine M decides $N U L L S A C K$. Then M can computes in polynomial time

$$
F_{n}(\bar{x})=\prod_{I \subseteq\{1, \ldots, n\}}\left(\sum_{i \in I} x_{i}\right) .
$$

Then

$$
\begin{aligned}
f_{n}(x) & =F_{n+1}\left(x, 1,2,2^{2}, \ldots, 2^{n-1}\right)= \\
& =\left(2^{n}-1\right)!\prod_{i=1}^{2^{n}-1}(x+i)
\end{aligned}
$$

can be computed by polynomial sized circuits.

Algebraic Circuits and Factorization

Moreover if polynomials

$$
f_{n}(x)=(x+1)(x+2) \ldots(x+n)
$$

can be computed by circuit of size $O(\operatorname{logn})$ for all n (that is a contradiction to Shub-Smale tau conjecture), then there exists a polynomialtime algorithm for integer factorization.

