Polynomial complexity classes over real

algebras with nilpotent elements

Alexander N. Rybalov, Omsk Branch IM SB RAS

IOKa3all TeopeMy ¢epMa TUK
MKC B CTelleHM 3H II€pEeHOCHUM
B IIpaByW YacTb TUYK
oIpo6HOCTH NHMCBMOM TUYK

Tenerpamma B agpec Akagemumn Hayk

Generalized Computability and Complexity

Blum, Shub and Smale, 1989: computability over rings (BSS-
model).

Ashaev, Belyaev and Myasnikov, 1992: computability over the list
superstructure (ABM-model).

Hemmerling, 1996: computability and complexity over algebraic
structures (based on BSS-model).

Rybalov, 2002: complexity over the list superstructure (based on
ABM-model).

BSS-model (Hemmerling version)

Computational model — a generalization of Turing machine to a ring
(R,4+, x,1,0). BSS-machine consists of:

e an finite tape, every cell of the tape contains an element from R,
e a finite number of pointers p; on cells of the tape,

e a program consisting of finite number of numerated commands

BSS-program
right(p;) (left(p;)) — to move pointer p; to the right (left) cell,

p; = pjop, (o € {+,x}) — to write in cell p; the sum or the
product of cells p; and py,

p;, =0, p, =1 — to write a constant in cell p;,

stop — the halting command,

if pi = pj goto q — if cells p; and p; contain the same element
then go to command gq, else to the next command,

lapp(p;) — to append a cell at left from p; (if p; points on the
most left cell),

rapp(p;) — to append a cell at right from p; (if p; points on the
most right cell),

del(p;) — to delete cell p; (if p; points on one of end cells), after
that p; (and all other pointers pointing on this cell) will point on
adjacent cell.

BSS-model

BSS-machine M computes some function

fM . R — R*
in the following way. The input string w of elements from R is writ-
ten on the starting tape. After start numerated commands of M are
performed one-by-one (goto command may change the order) until

the stop command. After halting the string f;(w) is written on the
tape. If M is not halting then f;(w) is not defined.

Having this definition we can develop a computability and complexity
theory over R.

The size of input w is just the length |w].

Some Features

e If ring R is binary field (0,1,+4, x,/) then we have the classical
Turing computability over binary strings.

e Example of recursive set over field C:

(a1,...,an) 13T C{1,...,n} > a; =0.
el

e Examples of not-recursive sets over field C: integers Z, Mandelbrot
and Julia fractals (Blum, Shub, Smale).

NP-complete problems

Satisfability problem over ring R:
(f1(z),..., fn(x)) : Ja € R”

is NP-complete (Blum, Shub, Smale).

List superstructure

Introduced by Goncharov and Sviridenko. (HL(A),o*)— list super-
structure of structure (A,o0). Here HL(A) is

Lo = A,Lpiq = LnUF(Ly)

where F'(B) is the set of all finite lists over B.

ocf=0oU {head(l), tail(l), cons(Q), nil}
o tail({a1,ao,...,an)) = {ap,...,an), head({a1,as,...,an)) = aq

e cons({ai,an,...,an),b) = {(a1,as,...,an,b), nil =)

ABM-model

Machine M has a finite number of registers Rq,..., Ry, in which el-
ements of HL(A) are stored. Program of machine consists of com-
mands of the types:

e R, = c, where c is a constant from ¢~
e Ry = f(R;,...,R;), where f is a function from o*

o if P(R;,...,R;) goto q, where P is a predicate from o or equality

ABM-model

T he first register R1 contains initial data. The commands are executed
in @ natural way. After halting Ry contains the result. SO machine M
computes a function

far s HL(A) — HL(A).
Theories of computability and complexity were developed in these
frameworks. The size of input is the size of list defined as
size(a) =1, a€ A,
size({aq,...,a)) = Zle size(a;).

Some Features

e For functions f: A* - A* ABM-model is equivalent to BSS-model
(Rybalov).

e Interesting types of sets (recursive, halting, output) have a natural
description in so-called logic of computable disjunctions (Ashaev,

Belyaev, Myasnikov).

e A theory of NP-completeness was developed (Rybalov).

Polynomial Classes over Structures

A= (A, o) — some structure.

Py — class of subsets of A*, recognized in polynomial time by deter-
Mministic BSS-machines.

DN Py — class of subsets of A*, recognized in polynomial time by
BSS-machines with nondeterministic branches.

vf ? goto ¢

N Py — class of subsets of A*, recognized in polynomial time by BSS-
machines with nondeterministic guesses.

p; = guess

P versus NP
Lemma. PQ[C DNPQ[C NPQ[

Question. Is Py = DNPy? Is DNPy = NPy?

-

DNP\

(-

P versus NP over Some Structures

DNP = NP over any finite structure and PvsNP is equivalent to
classical PvsNP.

P #= DNP over (R,+) (Meer, 1992).

P#= DNP over (R,4,<) <& P # NP in classics (Koiran, 1996).

P #= DNP over infinite abelian groups (Gassner, 2002).

DNP # NP over of integers (Z,+,—, x,0,1) (Hemmerling, 1995).

P versus NP over Some Structures

P #= DNP over infinite Boolean algebras (Prunescu, 2003).

P #= DNP over real and complex matrix rings (Rybalov, 2004).

DNP # NP over unordered field R (BSS + Cucker 1997).

DNP #= NP over field Q (Malajovich, 1997).

Hemmerling in 2005 constructed a structure where P = NP.

P versus NP over R and C
Question. Is P = DNP and DNP %« NP over (C,+,—,x,/,0,1)7

Question. Is P = DNP and DNP # NP over (R, 4, —, x,/,<,0,1)7?

e If BPP = P then classical P = NP implies P = NP over R (BSS,
1997)

e Oracles: PZ # DNPZ over C (Rybalov,2004)

P %= DNP over (R,+)
Theorem. P = DNP over (R, +)

We prove that the following set from DNP

NULLSACK = {(a1,...,an) : 31 C {1,...,77,}2% = 0}
icl
does not belong to P. Suppose there is a BSS-machine M, recognized
NULLSACK with polynomial time bound p(n). Let's try to cheat M.

How to cheat polynomial machines?
Fix a size n such that 2" — 1 > p(n)
Put o« = (a1,...,an) to M with a; linearly independent over Z
a¢ NULLSACK and M outputs NO

In computation on o« M has N < p(n) < 2" — 1 tests of type

l;(a1,...,an) =0,i=1,...,N (%)

where [is a linear combination with integer coefficients. All non-
trivial tests give inequations because a; are independent over Z.

How to cheat polynomial machines?

e Now put to M input 8 = (by,...,bn) such that 8 € NULLSACK
but for all non-trivial tests in (*) [;(8) #= O.

e It's possible because N < 2™ — 1 planes

li(x1,...,2n) =0,2=1,...,N
cannot cover 2™ — 1 planes of NULLSACK
inzO,Ig {1,...,n}
iel
So M on 8 has the same computational path as on a and outputs
NO!

P #= DNP over algebras with nilpotent elements

Theorem. P # DNP over A, where A is a real algebra with nilpotent
elements.

Theorem. P = DNP over A, where A is an algebra over field of
characteristics O with nilpotent elements.

P # DNP over ring (R,+,—, x,0,1)

A problem with similar scheme of proof for ring R: surfaces

fileg, .., o) =0,i=1,...,N <2" ~1
with polynomials f; can cover NULLSACK. Actually one surface
IC{1,...,n} €l
covers NULLSACK.

But can a polynomial machine get such "big"polynomial F' in its
computation?

Algebraic Circuits

Algebraic circuit C' of variables x4, ..., x, IS a finite sequence of assign-
ments of type

Yy — U OUE, O S {_I_)_)X})

where Uj, U, IS either some input variable x;, Or some previous inter-
mediate variable y;,j <<, or constant 1.

Circuit ' computes a polynomial of variables zq,...,xn with integer
coefficients. The size 7(C) of C is the number of assignments.

T(f) = m(/in{T(C) : C computes f}

An Example

A polynomial of very big power can be computed by a small circuit.
Consider a sequence of polynomials f,(z) = z2". It is easy to see that
it is computed by the following circuit

Yyp =2 -4, Y2 = Y1 " Y1,--->Yn — Yn—1 " Yn-—1-

The size of this circuit n is logarithmic of the power of polynomial
2", Moreover it is a well-known fact that any polynomial z" can be
computed by a circuit of size O(logn) - corresponding algorithm is
used for encoding and decoding in RSA.

Algebraic Circuits and P vs NP over ring R

Shub-Smale tau conjecture: There exists a constant C > 0 such that
any polynomial with integer coefficients f(x)

r(f) > Int(f)°

where Int(f) is the number of different integer roots of f(x).

Theorem (BBS -+ Cucker). If Shub-Smale tau conjecture is true
then P #= DNP over R.

Algebraic Circuits and P vs NP over ring R

Suppose some polynomial BSS-machine M decides NULLSACK. Then
M can computes in polynomial time

IC{1,....m} €l
Then

fn(ﬂﬁ) — Fn—l—l(aj7 17 27 227 R 2n_1) —

2n—1
=2"-1! [] (z+4)
1=1

can be computed by polynomial sized circuits.

Algebraic Circuits and Factorization

Moreover if polynomials

frnx)=(xz4+1)(xz+2)...(x+n)

can be computed by circuit of size O(logn) for all n (that is a contra-
diction to Shub-Smale tau conjecture), then there exists a polynomial-

time algorithm for integer factorization.

