
Polynomial complexity classes over real

algebras with nilpotent elements

Alexander N. Rybalov, Omsk Branch IM SB RAS

äîêàçàë òåîðåìó ôåðìà ò÷ê
èêñ â ñòåïåíè ýí ïåðåíîñèì

â ïðàâóþ ÷àñòü ò÷ê
ïîäðîáíîñòè ïèñüìîì ò÷ê

Òåëåãðàììà â àäðåñ Àêàäåìèè Íàóê

Generalized Computability and Complexity

• Blum, Shub and Smale, 1989: computability over rings (BSS-

model).

• Ashaev, Belyaev and Myasnikov, 1992: computability over the list

superstructure (ABM-model).

• Hemmerling, 1996: computability and complexity over algebraic

structures (based on BSS-model).

• Rybalov, 2002: complexity over the list superstructure (based on

ABM-model).

BSS-model (Hemmerling version)

Computational model � a generalization of Turing machine to a ring

〈R,+,×,1,0〉. BSS-machine consists of:

• an �nite tape, every cell of the tape contains an element from R,

• a �nite number of pointers pi on cells of the tape,

• a program consisting of �nite number of numerated commands

BSS-program

• right(pi) (left(pi)) � to move pointer pi to the right (left) cell,

• pi = pj ◦ pk (◦ ∈ {+,×}) � to write in cell pi the sum or the

product of cells pj and pk,

• pi = 0, pi = 1 � to write a constant in cell pi,

• stop � the halting command,

• if pi = pj goto q � if cells pi and pj contain the same element

then go to command q, else to the next command,

• lapp(pi) � to append a cell at left from pi (if pi points on the

most left cell),

• rapp(pi) � to append a cell at right from pi (if pi points on the

most right cell),

• del(pi) � to delete cell pi (if pi points on one of end cells), after

that pj (and all other pointers pointing on this cell) will point on

adjacent cell.

BSS-model

BSS-machine M computes some function

fM : R∗ → R∗

in the following way. The input string w of elements from R is writ-

ten on the starting tape. After start numerated commands of M are

performed one-by-one (goto command may change the order) until

the stop command. After halting the string fM(w) is written on the

tape. If M is not halting then fM(w) is not de�ned.

Having this de�nition we can develop a computability and complexity

theory over R.

The size of input w is just the length |w|.

Some Features

• If ring R is binary �eld 〈0,1,+,×, /〉 then we have the classical

Turing computability over binary strings.

• Example of recursive set over �eld C:

(a1, . . . , an) : ∃I ⊆ {1, . . . , n}
∑
i∈I

ai = 0.

• Examples of not-recursive sets over �eld C: integers Z, Mandelbrot

and Julia fractals (Blum, Shub, Smale).

NP-complete problems

Satisfability problem over ring R:

(f1(x̄), . . . , fn(x̄)) : ∃ā ∈ R∗

f1(ā) = 0 ∧ . . . ∧ fn(ā) = 0

is NP -complete (Blum, Shub, Smale).

List superstructure

Introduced by Goncharov and Sviridenko. 〈HL(A), σ∗〉� list super-

structure of structure 〈A, σ〉. Here HL(A) is

L0 = A, Ln+1 = Ln ∪ F (Ln)

HL(A) = ∪∞n=0Ln,

where F (B) is the set of all �nite lists over B.

σ∗ = σ ∪ {head(1), tail(1), cons(2), nil}

• tail(〈a1, a2, . . . , an〉) = 〈a2, . . . , an〉, head(〈a1, a2, . . . , an〉) = a1

• cons(〈a1, a2, . . . , an〉, b) = 〈a1, a2, . . . , an, b〉, nil = 〈〉

ABM-model

Machine M has a �nite number of registers R1, . . . , Rn, in which el-

ements of HL(A) are stored. Program of machine consists of com-

mands of the types:

• Ri = Rj

• Ri = c, where c is a constant from σ∗

• Ri = f(Ri1, . . . , Rik), where f is a function from σ∗

• if P (Ri1, . . . , Rik) goto q, where P is a predicate from σ or equality

ABM-model

The �rst register R1 contains initial data. The commands are executed

in a natural way. After halting R1 contains the result. So machine M

computes a function

fM : HL(A) → HL(A).

Theories of computability and complexity were developed in these

frameworks. The size of input is the size of list de�ned as

size(a) = 1, a ∈ A,

size(〈a1, . . . , ak〉) =
∑k

i=1 size(ai).

Some Features

• For functions f : A∗ → A∗ ABM-model is equivalent to BSS-model

(Rybalov).

• Interesting types of sets (recursive, halting, output) have a natural

description in so-called logic of computable disjunctions (Ashaev,

Belyaev, Myasnikov).

• A theory of NP -completeness was developed (Rybalov).

Polynomial Classes over Structures

A = 〈A, σ〉 � some structure.

PA � class of subsets of A∗, recognized in polynomial time by deter-

ministic BSS-machines.

DNPA � class of subsets of A∗, recognized in polynomial time by

BSS-machines with nondeterministic branches.

if ? goto q

NPA � class of subsets of A∗, recognized in polynomial time by BSS-

machines with nondeterministic guesses.

pi = guess

P versus NP

Lemma. PA ⊆ DNPA ⊆ NPA

Question. Is PA = DNPA? Is DNPA = NPA?

'

&

$

%

'

&

$

%

'
&

$
%

DNP

NP

P

P versus NP over Some Structures

• DNP = NP over any �nite structure and PvsNP is equivalent to

classical PvsNP .

• P 6= DNP over 〈R,+〉 (Meer, 1992).

• P 6= DNP over 〈R,+,≤〉 ⇔ P 6= NP in classics (Koiran, 1996).

• P 6= DNP over in�nite abelian groups (Gassner, 2002).

• DNP 6= NP over of integers 〈Z,+,−,×,0,1〉 (Hemmerling, 1995).

P versus NP over Some Structures

• P 6= DNP over in�nite Boolean algebras (Prunescu, 2003).

• P 6= DNP over real and complex matrix rings (Rybalov, 2004).

• DNP 6= NP over unordered �eld R (BSS + Cucker 199?).

• DNP 6= NP over �eld Q (Malajovich, 199?).

• Hemmerling in 2005 constructed a structure where P = NP .

P versus NP over R and C

Question. Is P 6= DNP and DNP 6= NP over 〈C,+,−,×, /,0,1〉?

Question. Is P 6= DNP and DNP 6= NP over 〈R,+,−,×, /,≤,0,1〉?

• If BPP = P then classical P = NP implies P = NP over R (BSS,

199?)

• Oracles: PZ 6= DNPZ over C (Rybalov,2004)

P 6= DNP over 〈R,+〉

Theorem. P 6= DNP over 〈R,+〉

We prove that the following set from DNP

NULLSACK = {(a1, . . . , an) : ∃I ⊆ {1, . . . , n}
∑
i∈I

ai = 0}

does not belong to P . Suppose there is a BSS-machine M , recognized

NULLSACK with polynomial time bound p(n). Let's try to cheat M .

How to cheat polynomial machines?

• Fix a size n such that 2n − 1 > p(n)

• Put α = (a1, . . . , an) to M with ai linearly independent over Z

• α /∈ NULLSACK and M outputs NO

• In computation on α M has N ≤ p(n) < 2n − 1 tests of type

li(a1, . . . , an) = 0, i = 1, . . . , N (∗)
where l is a linear combination with integer coe�cients. All non-

trivial tests give inequations because ai are independent over Z.

How to cheat polynomial machines?

• Now put to M input β = (b1, . . . , bn) such that β ∈ NULLSACK

but for all non-trivial tests in (*) li(β) 6= 0.

• It's possible because N < 2n − 1 planes

li(x1, . . . , xn) = 0, i = 1, . . . , N

cannot cover 2n − 1 planes of NULLSACK∑
i∈I

xi = 0, I ⊆ {1, . . . , n}

So M on β has the same computational path as on α and outputs

NO!

P 6= DNP over algebras with nilpotent elements

Theorem. P 6= DNP over A, where A is a real algebra with nilpotent

elements.

Theorem. P 6= DNP over A, where A is an algebra over �eld of

characteristics 0 with nilpotent elements.

P 6= DNP over ring 〈R,+,−,×,0,1〉

A problem with similar scheme of proof for ring R: surfaces

fi(x1, . . . , xn) = 0, i = 1, . . . , N < 2n − 1

with polynomials fi can cover NULLSACK. Actually one surface

F (x̄) =
∏

I⊆{1,...,n}
(

∑
i∈I

xi) = 0

covers NULLSACK.

But can a polynomial machine get such "big"polynomial F in its

computation?

Algebraic Circuits

Algebraic circuit C of variables x1, ..., xn is a �nite sequence of assign-

ments of type

yi = uj ◦ uk, ◦ ∈ {+,−,×},

where uj, uk is either some input variable xj, or some previous inter-

mediate variable yj, j < i, or constant 1.

Circuit C computes a polynomial of variables x1, ..., xn with integer

coe�cients. The size τ(C) of C is the number of assignments.

τ(f) = min
C
{τ(C) : C computes f}

An Example

A polynomial of very big power can be computed by a small circuit.

Consider a sequence of polynomials fn(x) = x2n
. It is easy to see that

it is computed by the following circuit

y1 = x · x, y2 = y1 · y1, . . . , yn = yn−1 · yn−1.

The size of this circuit n is logarithmic of the power of polynomial

x2n
. Moreover it is a well-known fact that any polynomial xn can be

computed by a circuit of size O(logn) - corresponding algorithm is

used for encoding and decoding in RSA.

Algebraic Circuits and P vs NP over ring R

Shub-Smale tau conjecture: There exists a constant C > 0 such that

any polynomial with integer coe�cients f(x)

τ(f) > Int(f)C

where Int(f) is the number of di�erent integer roots of f(x).

Theorem (BBS + Cucker). If Shub-Smale tau conjecture is true

then P 6= DNP over R.

Algebraic Circuits and P vs NP over ring R

Suppose some polynomial BSS-machine M decides NULLSACK. Then

M can computes in polynomial time

Fn(x̄) =
∏

I⊆{1,...,n}
(

∑
i∈I

xi).

Then

fn(x) = Fn+1(x,1,2,22, . . . ,2n−1) =

= (2n − 1)!
2n−1∏
i=1

(x + i)

can be computed by polynomial sized circuits.

Algebraic Circuits and Factorization

Moreover if polynomials

fn(x) = (x + 1)(x + 2) . . . (x + n)

can be computed by circuit of size O(logn) for all n (that is a contra-

diction to Shub-Smale tau conjecture), then there exists a polynomial-

time algorithm for integer factorization.

