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Main concept

Definition
A Latin Square of order n is a square matrix with n2 entries of n different
elements, none of them occurring twice within any row or column of the
matrix.

Example

0 1 2 · · · n − 1
1 2 3 0
2 3 1
3 2
...

...
n − 1 0 1 · · · n − 2

L(x , y) = x + y (mod n)
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Basic notions and elementary facts

Definition
A quasigroup is a groupoid (a set S equipped with a binary operation)
such that, for any two elements a, b ∈ S , each of the equations ax = b
and ya = b has exactly one solution (i.e., both the left and right inverse
operations are uniquely defined).

Fact
Latin squares ↔ multiplication tables of finite quasigroups
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Quadrangle criterion. Group Latin squares

Definition
A matrix A = {aij} is said to satisfy the quadrangle criterion if, for any
indices i , j , k , l , i1, j1, k1, l1, the equalities ajk = aj1k1 , aik = ai1k1 , and
ail = ai1l1 imply ajl = aj1l1 .

Fact
The multiplication table of any finite group (its Cayley table) is a Latin
square satisfying the quadrangle criterion.
Conversely, any Latin square satisfying the quadrangle criterion may be
bordered in such a way as to present the Cayley table of some finite group.

Latin squares satisfying QC ↔ multiplication tables of finite groups
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Classification of Latin squares

Definition
Let (G , ·) and (H, ∗) be two quasigroups. An ordered triple (θ, ϕ, ψ) of
one-to-one mappings of the set G onto H is called an isotopism of (G , ·)
upon (H, ∗) if (xθ) ∗ (yϕ) = (x · y)ψ for all x , y ∈ G .
If θ = ϕ = ψ, then the quasigroups are said to be isomorphic.

Definition
The conjugates of a Latin square L = L(x , y) are the Latin squares
−1L, L−1, L∗, (−1L)∗, and (L−1)∗, where L∗ is the transpose of square L,
and −1L (or L−1) is the left (right) inverse of square L in the sense that
−1L(L(x , y), y) = x (respectively, L−1(x , L(x , y)) = y).
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Classification of Latin squares (classes)

Definition
A set of Latin squares which comprises all the members of some isotopy
class together with their conjugates is called a main class of Latin squares.

Fact
The set of all Latin squares of order n splits into disjoint main classes.
Each main class is a union of complete isotopy classes.
Each isotopy class splits into disjoint isomorphism classes.
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Motivation for study

Latin squares are widely used in
experimental design;
error-correcting codes;
entertainment;
cryptography.

It was demonstrated by C. Shannon∗ that stream ciphers based on Latin
squares are, in a sense, “perfect.”

∗ Shannon C., “Communication Theory of Secrecy Systems”
// Bell System Techn. J., 28, 4 (1949), 656–715.
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Some directions of research

Constructing Latin Squares which have particular orders and differ
from the already known examples.
“Extending” (or “reducing”) Latin squares of order n to Latin squares
of order n + 1 (respectively, n − 1).
Completing partially filled matrices to Latin squares.
Classifying Latin squares of a given order n.
Constructing (wide) parametric classes of Latin squares.
Optimal (compact) specification of large Latin squares: constructive
(analytical) methods.
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Constructing non-group Latin squares of large prime orders

Consider an (n × n)-matrix L = L(x , y) specified by the formula

L(x , y) = π(x + y) + x or L(x , y) = π(x + y)− x .

Here, x , y ∈ {0, 1, . . . , n − 1}, the sum x + y is considered modulo n
and π is a mapping Zn → Zn.
Denote by π+ (respectively, π−) the class of mappings π for which the
matrix defined above is a Latin square.

Fact
A mapping π = π(z) belongs to π+ (respectively, π−) if and only if

1 π(z) is bijective and
2 σ(z) = π(z) + z (respectively, σ(z) = π(z)− z) is bijective as well.

V.A. Nosov and A.E. Pankratiev (MSU) Specifying Latin Squares Omsk, August 22, 2009 10 / 24



Constructing non-group Latin squares of large prime orders

Consider an (n × n)-matrix L = L(x , y) specified by the formula

L(x , y) = π(x + y) + x or L(x , y) = π(x + y)− x .

Here, x , y ∈ {0, 1, . . . , n − 1}, the sum x + y is considered modulo n
and π is a mapping Zn → Zn.
Denote by π+ (respectively, π−) the class of mappings π for which the
matrix defined above is a Latin square.

Fact
A mapping π = π(z) belongs to π+ (respectively, π−) if and only if

1 π(z) is bijective and
2 σ(z) = π(z) + z (respectively, σ(z) = π(z)− z) is bijective as well.

V.A. Nosov and A.E. Pankratiev (MSU) Specifying Latin Squares Omsk, August 22, 2009 10 / 24



Constructing non-group Latin squares of large prime orders

Consider an (n × n)-matrix L = L(x , y) specified by the formula

L(x , y) = π(x + y) + x or L(x , y) = π(x + y)− x .

Here, x , y ∈ {0, 1, . . . , n − 1}, the sum x + y is considered modulo n
and π is a mapping Zn → Zn.
Denote by π+ (respectively, π−) the class of mappings π for which the
matrix defined above is a Latin square.

Fact
A mapping π = π(z) belongs to π+ (respectively, π−) if and only if

1 π(z) is bijective and
2 σ(z) = π(z) + z (respectively, σ(z) = π(z)− z) is bijective as well.

V.A. Nosov and A.E. Pankratiev (MSU) Specifying Latin Squares Omsk, August 22, 2009 10 / 24



Constructing non-group Latin squares of large prime orders

Fix a prime p > 5 and let s be a primitive root in Z∗
p.

Then ∃l > 2, m ≥ 2: p − 1 = l ·m. Denote k = sm.
Note that ord(k) = l > 2, hence, k 6= ±1.
Consider the permutation

π = (0)(1 k k2 . . . k l−1)(s sk . . . sk l−1) . . . (sm−1 sm−1k . . . sm−1k l−1)

Introduce ε = (ε0, . . . , εm−1), where ε0 = 1 and εi = ±1, i = 1,m − 1.
Denote by πε the permutation obtained from π by reversing all cycles that
correspond to εi = −1 (excluding the cycle (0)).

Theorem (Budagyan)
For ε 6= (1, . . . , 1), formula L(x , y) = πε(x + y) + x defines a non-group
Latin square of order p (the quadrange criterion is violated).
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Constructing classes of Latin squares

Let us turn once again to the simplest

Example

0 1 · · · n − 1
1 2 0
...

...
n − 1 0 · · · n − 2

L(x , y) = x + y (mod n)

and introduce some “disturbance” (or “remainder”) into this formula:

L(x , y) = x + y + f (x , y)

Below we treat this formula in “vector” form.
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Latin squares over Abelian groups

Fix a finite Abelian group G and let H = G n = G × G × · · · × G .
Define a square L of size |H| × |H| over H as follows.

“Enumerate” rows and columns of L by elements of H;
Define the entry L(x , y) = (z1, . . . , zn) at row x = (x1, . . . , xn) ∈ H
and column y = (y1, . . . , yn) ∈ H by the formulas

z1 = x1 + y1 + f1(p1(x1, y1), . . . , pn(xn, yn))

z2 = x2 + y2 + f2(p1(x1, y1), . . . , pn(xn, yn))

...
zn = xn + yn + fn(p1(x1, y1), . . . , pn(xn, yn)).

Here, pi : G × G → G ; fi : G n → G , i = 1, n.
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Latin squares over Abelian groups

Question
What are necessary/sufficient conditions on functions fi for L to be a Latin
square?
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Proper families of functions

Definition
Functions f1, f2, . . . , fn of variables p1, p2, . . . , pn form a proper family if,
for any distinct n-tuples p′ = (p′1, p

′
2, . . . , p

′
n) and p′′ = (p′′1 , p

′′
2 , . . . , p

′′
n),

there is an index α, 1 ≤ α ≤ n, such that p′α 6= p′′α, while fα(p′) = fα(p′′).

Examples
Families of constant functions.
Families of “triangular” form:
f1 ≡ const, f2 = f2(p1), f3 = f3(p1, p2), . . . , fn = fn(p1, p2, . . . , pn−1).
“Clique” families:
f1 = x2x3 · · · xn, f2 = x3x4 · · · xnx1, . . . , fn = x1x2 · · · xn−1, n ≥ 3.
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Proper families of functions

Theorem (NP)
Formulas

z1 = x1 + y1 + f1(p1(x1, y1), . . . , pn(xn, yn))

z2 = x2 + y2 + f2(p1(x1, y1), . . . , pn(xn, yn))

...
zn = xn + yn + fn(p1(x1, y1), . . . , pn(xn, yn))

determine a Latin square for any functions p1, p2, . . . , pn if and only if the
family F = {f1, f2, . . . , fn} is proper.
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The graph of essential dependence of a family of functions

We restrict our presentation to the case of Boolean functions (the Abelian
group G coincides with Z2) and investigate such families of terms of
graphs.

Definition
The graph of essential dependence of a family of functions F = {fi}n

i=1,
fi = fi (z1, . . . , zn), is a directed graph GF = (V ,E ) defined on the set
of vertices V = {1, 2, . . . , n}, where two vertices i , j are connected by a
(directed) edge (i , j) ∈ E if and only if fj essentially depends on xi .

Remark
The graph of essential dependence of a proper family is free of loops.
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Graphs of proper families of functions

Theorem (NP)
A family of linear functions F = {f1, f2, . . . , fn} is proper if and only if its
graph of essential dependence GF contains no cycles.

Remark
The class of functions in which a family is proper if and only if its graph of
essential dependence contains no cycles can be significantly extended to
the class of the so-called H-functions.
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Graphs of proper families of functions

Question
What directed graphs are the graphs of essential dependence of some
proper families of functions?

Remark

Any directed graph without cycles is the graph of essential dependence
of a proper family of functions.
A complete graph on n vertices (n ≥ 3) is the graph of essential
dependence of a proper family of functions.

Clearly, any directed graph G without loops and multiple edges can be
embedded in the graph of essential dependence of some proper family.
However, in such embedding, the original graph G may be augmented with
a large number of new edges. Moreover, the proper family which has a
complete graph of essential dependence may have little in common with
the family of functions that realizes the original graph G .
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Graphs of proper families of functions

Problem
Construct an embedding of a given graph G into some larger graph G ′

which can be treated the graph of essential dependence of a proper family
of functions F ′ = {f ′i } in such a way that the structure of graph G be
preserved.

This is particularly important when the original graph G arises as the graph
of essential dependence of some given family of functions F = {fi}. In this
case, it is desirable that functions f ′i most closely resemble the original
functions fi in the sense that, for a certain evaluation of the newly
introduced variables, functions f ′i treated as functions of the original
variables coincide with functions fi .
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Graphs of proper families of functions

Definition
Let C be a directed cycle in an arbitrary directed graph G (V ,E ). The
collapse of cycle C is the operation of passing from graph G (V ,E ) to a
new graph GC (V C ,EC ) obtained from G (V ,E ) by deleting all edges
involved in the cycle C and identifying all vertices visited by cycle C .

Theorem (NP)
Suppose that a finite directed graph G (V ,E ) without loops and multiple
edges is proper (i.e., can be considered the graph of essential dependence
of a proper family of functions). Then the collapse of any irreducible simple
cycle C ∈ G gives a graph GC that contains multiple edges.
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Graphs of proper families of functions

Theorem (NP)
Let G (V ,E ) be an arbitrary directed graph without loops and multiple
edges on n vertices V = {1, 2, . . . , n}.
Then there exists a larger proper graph G ′(V ′,E ′) on n′ ≤ n + dlog2 ne
vertices V ′ = {1, 2, . . . , n′} such that its subgraph induced by the vertex
subset V ⊆ V ′ coincides with G.
Moreover, for any family of functions F = {fi}n

i=1 realizing the original
graph G, one can find a proper family of functions F ′ = {f ′i }n′

i=1 which
realizes graph G ′ and such that for every i , 1 ≤ i ≤ n, there exists an
evaluation of arguments xn+1, . . . , xn′ such that f ′i as a function of n
arguments x1, . . . , xn coincides with fi .
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Graphs of proper families of functions

Remark
If the set V of vertices of the original graph G (V ,E ) can be partitioned
into two subsets V = V0 t V1 in such a way that any directed cycle of
graph G (V ,E ) contains vertices of both subsets V0,V1, then the
graph G ′(V ′,E ′) mentioned above can be constructed using only one
additional vertex.
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