# Acyclic schemata of databases

S. V. Zykin OB IM SB RAS

### **Database relations**

| Ħ | List of groups |              |                     |
|---|----------------|--------------|---------------------|
|   | Group's number | Group's code | Speciality's number |
|   | 1              | M-210        | 1                   |
|   | 2              | M-220        | 2                   |

| III Students     |                |                |  |  |  |  |  |  |  |  |
|------------------|----------------|----------------|--|--|--|--|--|--|--|--|
| Student's number | Group's number | Student's name |  |  |  |  |  |  |  |  |
| 1                | 1              | Ivanov I.I.    |  |  |  |  |  |  |  |  |
| 1                | 2              | Sidorov S.S.   |  |  |  |  |  |  |  |  |
| 2                | 1              | Petrov P.P.    |  |  |  |  |  |  |  |  |
| 2                | 2              | Kovalev K.K.   |  |  |  |  |  |  |  |  |

| I Subjects |                  |                 |  |  |  |  |  |  |
|------------|------------------|-----------------|--|--|--|--|--|--|
|            | Subject's number | Name of subject |  |  |  |  |  |  |
|            | 1                | Mathematics     |  |  |  |  |  |  |
|            | 2                | Physics         |  |  |  |  |  |  |

#### III Marks

| Student's number | Group's number | Subject's number | Mark |  |  |  |  |  |  |  |
|------------------|----------------|------------------|------|--|--|--|--|--|--|--|
| 1                | 1              | 1                | 5    |  |  |  |  |  |  |  |
| 1                | 2              | 1                | 4    |  |  |  |  |  |  |  |
| 1                | 2              | 2                | 3    |  |  |  |  |  |  |  |
| 1                | 2              | 3                | 5    |  |  |  |  |  |  |  |

| III Specialities |                     |                   |  |  |  |  |  |  |
|------------------|---------------------|-------------------|--|--|--|--|--|--|
|                  | Speciality's number | Speciality's name |  |  |  |  |  |  |
|                  | 1                   | Programming       |  |  |  |  |  |  |
| •                | 2                   | Pedagogy          |  |  |  |  |  |  |

| III Educational plan |                  |                     |                   |  |  |  |  |  |
|----------------------|------------------|---------------------|-------------------|--|--|--|--|--|
|                      | Subject's number | Speciality's number | Quantity of hours |  |  |  |  |  |
|                      | 1                | 1                   | 40                |  |  |  |  |  |
|                      | 1                | 2                   | 30                |  |  |  |  |  |
|                      | 2                | 1                   | 30                |  |  |  |  |  |
|                      | 2                | 2                   | 40                |  |  |  |  |  |

#### New tuple: t=(M-210, Ivanov I.I., Physics, 4)

### Acyclic databases

Condition 1. The relations set is acyclic, if acyclic hypergraph associated with it.

<u>Definition</u>. The hypergraph of a relations set  $R_1, \ldots, R_n$  has as its set of nodes N those attributes that appear in one or more of the  $R_i$ 's, and as its set of edges  $E=\{R_1, \ldots, R_n\}$ .

<u>Definition</u>. Let (N, E) be a hypergraph. Its reduction (N, E') is obtained by removing from E each edge that is a proper subset of another edge.



### Intersections graph



Condition 2. The relations set is acyclic, if it has a join tree in intersections graph.

### Inclusion dependences

- **Definition**. Let  $R_i[A_1, ..., A_m]$  and  $R_j[B_1, ..., B_p]$  schemes of relations (not necessarily various),  $V \subseteq \{A_1, ..., A_m\}$  and  $W \subseteq \{B_1, ..., B_p\}$ , |V|=|W|, than object  $R_i[V] \subseteq R_j[W]$  called as inclusion dependence, where |V| capacity of set V.
- *V*=*W* typed inclusion dependence,
- $R_i[V]$  projection of the relation  $R_i$  on attributes V.

### Relationship on database scheme

**PK(R<sub>i</sub>)** – primary key **R**<sub>i</sub>,

- $L_1(i,j)$  relationship 1:1 from  $R_i$  to  $R_j$ ,
- $L_M(i,j)$  relationship **1:M** from  $R_i$  to  $R_j$ ,

**Definition**. There is the relationship  $L_1(i,j)$ between  $R_i$  and  $R_j$ , if  $PK(R_i)=PK(R_j)$  and  $R_j[V] \subseteq R_i[V]$  for any realizations  $R_i$  and  $R_j$  is true, where  $V=[R_i] \cap [R_j]$ ,  $[R_i]$  is the attributes set of the relation  $R_i$ .

**Definition**. There is the relationship  $L_M(i,j)$ between relations  $R_i$  and  $R_j$ , if  $PK(R_i) \neq PK(R_j)$ and  $PK(R_i) \subseteq [R_j]$ .

### New definition of acyclic database

- **Definition**. The set of relations B will be named as acyclic, if not exist an ordered the relations subset
  - $\{ R_{m(1)}, R_{m(2)}, \dots, R_{m(s)} \} \subseteq \mathcal{R} \text{ and } L(m(1), m(2)), \\ L(m(2), m(3)), \dots, L(m(s-1), m(s)), L(m(s), m(1)), \\ s > 1.$
- **Theorem**. If the relation set is cyclic, then associated with it hypergraph also will be cyclic. (inverse statement is not correct).

# Unstructural definition of superfluous relationship

- **Definition 4.3**. The relationship *L(i,j)* is superfluous, if the restrictions, set by this relationship on attributes values, contain in other relationships.
- 1. On the basis of dependencies (functional, and joins) the set of the relations is formed.
- 2. By definitions between the relations the relationships are established.
- 3. The removal of superfluous relationships is carried out.

### Algorithm of formation of relationships set

```
L=Ø
do i=1 to k
    do j=i+1 to k
           if PK(R_i) = PK(R_i) then
                       V = PK(R_i)
                       if \pi_V(R_i) \subseteq \pi_V(R_i) then L = L \cup L_1(i,j)
                       if \pi_V(R_i) \subseteq \pi_V(R_i) then L = L \cup L_1(j,i)
           else
                       if PK(R_i) \subseteq R_i then L = L \cup L_M(i,j)
                       if PK(R_i) \subseteq R_i then L = L \cup L_M(j,i)
           endif
    enddo
enddo
```

- Algorithm has a polynomial difficulty: O(k<sup>2</sup>)

### Removing of superfluous relationships

Theorem. The relationship *L(i,j)* is superfluous, if there are relationships:

# L(i,m(1)), L(m(1),m(2)), ..., L(m(p-1),m(p)), L(m(p),j)

and

$$PK(i) \subseteq R_{m(s)}, s=2,3,...,p,$$

where m – array of the relations numbers.

 $L(i,v), L(v,j), v \neq m(s), s=1,2,...,p.$ 

### Algorithm

```
for each L(i,j) in L; I=1; m(I)=i; iterations=true
  do while iterations
    for each L(v,w) in L where L(i,j) \neq L(v,w); substitution=false
      if v \in m[1, \dots, l] then
        if w=j then; L=L-L(i,j); exit do; else
          if w \notin m[1, \dots, l] then; l=l+1; m(l)=w; substitution=true
          endif
        endif
      endif
   endfor
    if not substitution then iterations=false
  enddo
endfor
```

- Algorithm has a polynomial difficulty: O(/L/2k2)

## Database scheme



## Thank you for attention

#### Table of Join

| $R_1 = A$ | B     | C     | $R_2 = B$ | D     | E     | $R_3$ | = A   | D     | F     |
|-----------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|
| $a_1$     | $b_1$ | $c_1$ | $b_1$     | $d_1$ | $e_1$ | -     | $a_1$ | $d_1$ | $f_1$ |
| $a_2$     | $b_2$ | $c_1$ | $b_2$     | $d_2$ | $e_2$ |       | $a_2$ | $d_2$ | $f_2$ |
|           | 1     | 1     |           |       |       |       | $a_3$ | $d_1$ | $f_2$ |

| S = | A     | B     | C     | D     | E     | F     | l   |
|-----|-------|-------|-------|-------|-------|-------|-----|
|     | $a_1$ | $b_1$ | $c_1$ | $d_1$ | $e_1$ | $f_1$ | 111 |
|     | $a_2$ | $b_2$ | $c_1$ | $d_2$ | $e_2$ | $f_2$ | 111 |
|     | $a_3$ | $b_1$ | *     | $d_1$ | $e_1$ | $f_2$ | 011 |

где \* - значение *етр*.

### Semantic transformation

| R = A | B     | C     | D     | ST = | A     | B     | $c_1$ | $c_2$ |
|-------|-------|-------|-------|------|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ | $d_1$ |      | $a_1$ | $b_1$ | $d_1$ | -     |
| $a_2$ | $b_2$ | $c_1$ | $d_2$ |      | $a_2$ | $b_2$ | $d_2$ | -     |
| $a_3$ | $b_1$ | $c_2$ | $d_1$ |      | $a_3$ | $b_1$ | -     | $d_1$ |