Whitehead minimization and computation of algebraic closures in polynomial time

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Omsk International Workshop

August 19th, 2009.

1/62

Outline

- Algebraic extensions
- 2 The bijection between subgroups and automata
- Takahasi's theorem
- Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

4/62

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : $|1|=0, \quad |aba^{-1}|=|abbb^{-1}a^{-1}|=3, \quad |uv|\leqslant |u|+|v|.$

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

- $A = \{a_1, \dots, a_n\}$ is a finite alphabet (n letters).
- $\bullet \ A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- Usually, $A = \{a, b, c\}$.
- $(A^{\pm 1})^*$ the free monoid on $A^{\pm 1}$ (words on $A^{\pm 1}$).
- $F_A = (A^{\pm 1})^* / \sim$ is the free group on A (words on $A^{\pm 1}$ modulo reduction).
- Every $w \in A^*$ has a unique reduced form,
- 1 denotes the empty word, and $|\cdot|$ the (shortest) length in F_A : |1| = 0, $|aba^{-1}| = |abbb^{-1}a^{-1}| = 3$, $|uv| \le |u| + |v|$.

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

In F(A), the analog is ...

far from true because $H \leqslant K \Rightarrow r(H) \leqslant r(K) \dots$

In basic linear algebra:

$$U \leqslant V \leqslant K^n \Rightarrow V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leq_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

In F(A), the analog is ...

almost true again, ... in the sense of Takahasi.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

```
w is transcendental over H \Longleftrightarrow \langle H, w \rangle \simeq H * \langle w \rangle
\iff H is contained in a proper f.f. of \langle H, w \rangle.
```

Problem

 w_1 , w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \iff \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$

Problem

 w_1 , w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \iff \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1 , w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists \ 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \iff \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \Rightarrow w_1 w_2$ algebraic over H.

Mimicking field theory...

Definition

Let $H \leq F(A)$ and $w \in F(A)$. We say that w is

- algebraic over H if $\exists 1 \neq e_H(x) \in H * \langle x \rangle$ such that $e_H(w) = 1$;
- transcendental over H otherwise.

Observation

w is transcendental over $H \iff \langle H, w \rangle \simeq H * \langle w \rangle$ $\iff H$ is contained in a proper f.f. of $\langle H, w \rangle$.

Problem

 w_1, w_2 algebraic over $H \not\Rightarrow w_1 w_2$ algebraic over H.

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K*-algebraic over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if ∀ free factorization K = K₁ * K₂ with H ≤ K₁, we have w ∈ K₁;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- K-algebraic over H if ∀ free factorization K = K₁ * K₂ with H ≤ K₁, we have w ∈ K₁;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic* over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

A relative notion works better...

Definition

Let $H \leq K \leq F(A)$ and $w \in K$. We say that w is

- *K-algebraic* over *H* if \forall free factorization $K = K_1 * K_2$ with $H \leqslant K_1$, we have $w \in K_1$;
- K-transcendental over H otherwise.

Observation

w is algebraic over H if and only if it is $\langle H, w \rangle$ -algebraic over H.

Observation

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 * K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leq_{ff} K,

\iff every w \in K is K-transcendental over H,
```

9/62

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 * K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leq_{ff} K,
```

Definition

```
Let H \leq K \leq F(A).
```

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \le K$ is a free extension, denoted $H \le_{\mathsf{ff}} K$, \iff every $w \in K$ is K-transcendental over H, $\iff H \le H * L = K$ for some L.

Definition

```
Let H \leqslant K \leqslant F(A).

We say that H \leqslant K is an algebraic extension, denoted H \leq_{alg} K,

\iff every w \in K is K-algebraic over H,

\iff H is not contained in any proper free factor of K,

\iff H \leqslant K_1 \leqslant K_1 * K_2 = K implies K_2 = 1.

We say that H \leqslant K is a free extension, denoted H \leq_{ff} K,

\iff every w \in K is K-transcendental over H.
```

9/62

Definition

```
Let H \leqslant K \leqslant F(A).
```

We say that $H \leq K$ is an algebraic extension, denoted $H \leq_{alg} K$,

 \iff every $w \in K$ is K-algebraic over H,

 \iff H is not contained in any proper free factor of K,

 $\iff H \leqslant K_1 \leqslant K_1 * K_2 = K \text{ implies } K_2 = 1.$

We say that $H \leqslant K$ is a free extension, denoted $H \leq_{ff} K$,

 \iff every $w \in K$ is K-transcendental over H,

 \iff $H \leqslant H * L = K$ for some L.

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L$ implies $H \leqslant_{alg} L$.
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leqslant_{\mathsf{ff}} \mathsf{L}$ and $H \leqslant \mathsf{K} \leqslant \mathsf{L}$ imply $H \leqslant_{\mathsf{ff}} \mathsf{K}$ but not necessarily $\mathsf{K} \leqslant_{\mathsf{ff}} \mathsf{L}$.

How many algebraic extensions does a given H have in F(A)?

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L \text{ implies } H \leqslant_{alg} L.$
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leqslant_{\mathsf{ff}} \mathsf{L}$ and $H \leqslant \mathsf{K} \leqslant \mathsf{L}$ imply $H \leqslant_{\mathsf{ff}} \mathsf{K}$ but not necessarily $\mathsf{K} \leqslant_{\mathsf{ff}} \mathsf{L}$.

How many algebraic extensions does a given H have in F(A)?

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L$ implies $H \leqslant_{alg} L$.
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L$ implies $H \leqslant_{alg} L$.
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Algebraic and free extensions

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L$ implies $H \leqslant_{alg} L$.
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

Algebraic and free extensions

Example

- $\langle a \rangle \leqslant_{ff} \langle a, \frac{b}{b} \rangle \leqslant_{ff} \langle a, \frac{b}{b}, c \rangle$, and $\langle x^r \rangle \leqslant_{alg} \langle x \rangle$, $\forall x \in F_A \ \forall \ 0 \neq r \in \mathbb{Z}$.
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant_{alg} K$.
- $H \leqslant_{alg} K \leqslant_{alg} L$ implies $H \leqslant_{alg} L$.
- $H \leqslant_{ff} K \leqslant_{ff} L \text{ implies } H \leqslant_{ff} L.$
- $H \leqslant_{alg} L$ and $H \leqslant K \leqslant L$ imply $K \leqslant_{alg} L$ but not necessarily $H \leqslant_{alg} K$.
- $H \leq_{ff} L$ and $H \leq K \leq L$ imply $H \leq_{ff} K$ but not necessarily $K \leq_{ff} L$.

How many algebraic extensions does a given H have in F(A)?

Can we compute them all?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leqslant_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, denoted $\mathcal{AE}(H)$, is finite.

- Original proof by Takahasi was combinatorial and technical,
- Modern proof, using Stallings automata, is much simpler, and due independently to Ventura (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, AE(H) is computable.

Outline

- Algebraic extensions
- 2 The bijection between subgroups and automata
- Takahasi's theorem
- Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected.
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected.
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

Definition

A Stallings automaton is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

- 1- X is connected.
- 2- no vertex of degree 1 except possibly v (X is a core-graph),
- 3- no two edges with the same label go out of (or in to) the same vertex.

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

 $\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\}$

which is crucial for the modern understanding of the lattice of subgroups of F_A .

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

 $\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\},$

which is crucial for the modern understanding of the lattice of subgroups of $F_{\!A}$.

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

```
\{f.g. \text{ subgroups of } F_A\} \longleftrightarrow \{\text{Stallings automata}\},
```

which is crucial for the modern understanding of the lattice of subgroups of F_A .

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Definition

To any given (Stallings) automaton (X, v), we associate its fundamental group:

$$\pi(X, v) = \{ \text{ labels of closed paths at } v \} \leqslant F_A,$$

clearly, a subgroup of F_A .

$$\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, babab^{-1}cb^{-1}, \ldots\}$$

$$\pi(X, \bullet) \not\ni bc^{-1}bcaa$$

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

Proof:

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

16 / 62

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|.

Proposition

For every Stallings automaton (X, v), the group $\pi(X, v)$ is free of rank $rk(\pi(X, v)) = 1 - |VX| + |EX|$.

- Take a maximal tree T in X.
- Write T[p, q] for the geodesic (i.e. the unique reduced path) in T from p to q.
- For every $e \in EX ET$, $x_e = label(T[v, \iota e] \cdot e \cdot T[\tau e, v])$ belongs to $\pi(X, v)$.
- Not difficult to see that $\{x_e \mid e \in EX ET\}$ is a basis for $\pi(X, v)$.
- And, |EX ET| = |EX| |ET|= |EX| - (|VT| - 1) = 1 - |VX| + |EX|. \square

$$H = \langle \rangle$$

$$H = \langle a, \rangle$$

18/62

$$H = \langle a, bab, \rangle$$

$$H = \langle \mathbf{a}, \mathbf{bab}, \mathbf{b}^{-1} \mathbf{cb}^{-1} \rangle$$

$$H = \langle a, bab, b^{-1}cb^{-1} \rangle$$

 $rk(H) = 1 - 3 + 5 = 3.$

$$F_{\aleph_0} \simeq H = \langle \dots, \, b^{-2}ab^2, \, b^{-1}ab, \, a, \, bab^{-1}, \, b^2ab^{-2}, \, \dots \rangle \leqslant F_2.$$

22 / 62

Constructing the automata from the subgroup

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices *u* and *v* to obtain

$$\bullet \xrightarrow{\quad x \quad} U = V \ .$$

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices *u* and *v* to obtain

$$\bullet \xrightarrow{x} u = v$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} u = v$$
.

This operation, $(X, v) \rightsquigarrow (X', v)$, is called a Stallings folding.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- 2- Perform successive foldings until obtaining a Stallings automaton, denoted $\Gamma(H)$.

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- Perform successive foldings until obtaining a Stallings automaton, denoted Γ(H).

Lemma (Stallings)

If $(X, v) \rightsquigarrow (X', v')$ is a Stallings folding then $\pi(X, v) = \pi(X', v')$.

Given a f.g. subgroup $H = \langle w_1, \dots w_m \rangle \leqslant F_A$ (we assume w_i are reduced words), do the following:

- 1- Draw the flower automaton,
- Perform successive foldings until obtaining a Stallings automaton, denoted Γ(H).

Flower(H)

Flower(H)

26 / 62

Folding #1

Folding #1.

28 / 62

Folding #2.

Folding #2.

Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle$

Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^{-2} \rangle$

31 / 62

Folding
$$\#3$$
.

By Stallings Lemma,
$$\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle = \langle b, aba^{-1}, a^3 \rangle$$

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
\{f.g. \ subgroups \ of \ F_A\} \longleftrightarrow \{Stallings \ automata\} \ H \to \Gamma(H) \ \pi(X,v) \leftarrow (X,v)
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
 \begin{array}{cccc} \{ \textit{f.g. subgroups of F}_{\textit{A}} \} & \longleftrightarrow & \{ \textit{Stallings automata} \} \\ & & \textit{H} & \to & \Gamma(\textit{H}) \\ & & \pi(\textit{X},\textit{v}) & \leftarrow & (\textit{X},\textit{v}) \end{array}
```

Local confluence

It can be shown that

Proposition

The automaton $\Gamma(H)$ does not depend on the sequence of foldings

Proposition

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection:

```
 \begin{array}{cccc} \{\textit{f.g. subgroups of F}_{\textit{A}}\} & \longleftrightarrow & \{\textit{Stallings automata}\} \\ & \textit{H} & \to & \Gamma(\textit{H}) \\ & \pi(\textit{X},\textit{v}) & \leftarrow & (\textit{X},\textit{v}) \end{array}
```

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- Finite automata work for the finitely generated case, but everything extends easily to the general case (using infinite graphs).
- The original proof (1920's) is combinatorial and much more technical.

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Definition

Let $H \le K \le F(A)$. Then, $H \le K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

- Consider $\Gamma(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \leqslant K \leqslant F(A)$. Then, $H \leqslant K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leqslant_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \le K \le F(A)$. Then, $H \le K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

Definition

Let $H \le K \le F(A)$. Then, $H \le K$ is algebraic if and only if H is not contained in any proper free factor of K.

Theorem (Takahasi, 1951)

For every $H \leq_{fg} F_A$, the set of algebraic extensions, $\mathcal{AE}(H)$, is finite.

- Consider $\tilde{\Gamma}(H)$, the result of attaching all possible (infinite) "hairs" to $\Gamma(H)$ (i.e. the covering of the bouquet corresponding to H).
- Given $H \leq K$ (both f.g.), we can obtain $\tilde{\Gamma}(K)$ from $\tilde{\Gamma}(H)$ by performing the appropriate identifications of vertices (plus subsequent foldings).

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

- Hence, if H ≤ K (both f.g.) then Γ(K) contains as a subgraph either Γ(H)
 or some quotient of it (i.e. Γ(H) after some identifications of vertices,
 Γ(H)/ ~).
- The overgroups of H: $\mathcal{O}(H) = \{\pi(\Gamma(H)/\sim, \bullet) \mid \sim \text{ is a partition of } V\Gamma(H)\}.$
- Hence, for every $H \leqslant K$, there exists $L \in \mathcal{O}(H)$ such that $H \leqslant L \leqslant_{ff} K$.
- Thus, $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$ and so, it is finite. \square

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute $\Gamma(H)$,
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is AE(H). \square

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute Γ(H)/ ~ for all partitions ~ of VΓ(H),
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_f K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute Γ(H)/ ~ for all partitions ~ of VΓ(H),
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_f K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

- ightarrow there are exponentially many partitions \sim
- ightarrow the cleaning process needs exponential time (... by the moment).

Computing AE(H)

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $A\mathcal{E}(H)$. \square

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Computing AE(H)

Corollary

 $\mathcal{AE}(H)$ is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{\mathit{ff}} K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

- ightarrow there are exponentially many partitions \sim
 - → the cleaning process needs exponential time (... by the moment).

Computing AE(H)

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Computing AE(H)

Corollary

AE(H) is computable.

Proof:

- Compute Γ(H),
- Compute $\Gamma(H)/\sim$ for all partitions \sim of $V\Gamma(H)$,
- Compute $\mathcal{O}(H)$,
- Clean $\mathcal{O}(H)$ by detecting all pairs $K_1, K_2 \in \mathcal{O}(H)$ such that $K_1 \leqslant_{ff} K_2$ and deleting K_2 .
- The resulting set is $\mathcal{AE}(H)$. \square

But ...

- ightarrow there are exponentially many partitions \sim
- → the cleaning process needs exponential time (... by the moment).

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

Observation

If $H \leqslant_{alg} K_1$ and $H \leqslant_{alg} K_2$ then $H \leqslant_{alg} \langle K_1 \cup K_2 \rangle$.

Corollary

For every $H \leqslant K \leqslant F_A$ (all f.g.), $\mathcal{AE}_{\kappa}(H)$ has a unique maximal element, called the K-algebraic closure of H, and denoted $Cl_K(H)$.

Corollary

Every extension $H \leqslant K$ of f.g. subgroups of F_A splits, in a unique way, in an algebraic part and a free part, $H \leqslant_{alg} Cl_K(H) \leqslant_{ff} K$.

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time).

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time)

In the rest of the talk we'll sketch the proof of:

Theorem (V. 2009)

Given $H \leqslant K \leqslant F_A$ (all f.g.) one can compute (a basis for) $Cl_K(H)$ in polynomial time w.r.t. the sum of lengths of given generators for H and K.

Main ingredients in the proof:

- 1) Construct directly $Cl_K(H)$ without having to compute all of $\mathcal{O}(H)$.
- 2) Use

Theorem (Roig-V.-Weil, 2007)

- Whitehead 1930's (classical and exponential),
- Silva-Weil 2006 (graphical algorithm, faster but still exponential),
- Roig-V.-Weil 2007 (variation of Whitehead algorithm in polynomial time).

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead)

Whitehead problem is solvable in F(A).

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \to u_1 \to u_2 \to \cdots \to u',$$

$$V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'$$
.

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius n, $S_n = \{ w \in F_k \mid ||w|| = n \}$. \square

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead)

Whitehead problem is solvable in F(A).

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$U \rightarrow U_1 \rightarrow U_2 \rightarrow \cdots \rightarrow U',$$

 $V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'.$

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius n, $S_n = \{w \in F_k \mid ||w|| = n\}$. \square

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead)

Whitehead problem is solvable in F(A).

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \to u_1 \to u_2 \to \cdots \to u',$$

$$v \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v'$$
.

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius n, $S_n = \{w \in F_k | ||w|| = n\}$. \square

Whitehead Problem

For a group G, find an algorithm s.t. given $u, v \in G$ decides whether there exists $\varphi \in Aut(G)$ such that $\varphi(u) = v$.

Theorem (Whitehead)

Whitehead problem is solvable in F(A).

"Proof":

First part: reduce ||u|| and ||v|| as much as possible by applying autos:

$$u \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u',$$

$$V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V'$$
.

Second part: analyze who is image of who by some auto, in the (finite!) sphere of given radius n, $S_n = \{w \in F_k \mid ||w|| = n\}$. \square

43 / 62

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in Aut(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F(A)$. If $\exists \varphi \in Aut(F(A))$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\varphi(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{lll} F(A) &
ightarrow & F(A) \ a_i & \mapsto & a_i & (ext{the multiplier}_j \ a_i
eq a_i & \mapsto & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in Aut(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F(A)$. If $\exists \varphi \in Aut(F(A))$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\varphi(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$egin{array}{lll} F(A) &
ightarrow & F(A) \ a_i & \mapsto & a_i \ a_i
eq a_i &
ightarrow & a_i^{\epsilon_j} a_i \, a_i^{\delta_j} \end{array}$$
 (the multiplier)

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Whitehead minimization problem

Let us concentrate in the first part:

Whitehead Minimization Problem (WMP)

Given $u \in F(A)$, find $\varphi \in Aut(F(A))$ such that $\|\varphi(u)\|$ is minimal.

Lemma (Whitehead)

Let $u \in F(A)$. If $\exists \varphi \in Aut(F(A))$ such that $\|\varphi(u)\| < \|u\|$ then \exists a "Whitehead automorphism" α such that $\|\varphi(u)\| < \|u\|$.

Definition

Whitehead automorphisms are those of the form:

$$F(A)
ightharpoonup F(A)$$
 $a_i
ightharpoonup a_i$
 $a_i \neq a_j
ightharpoonup a_i^{\epsilon_j} a_j a_i^{\delta_j}$ (the multiplier)

where $\epsilon_j = 0, -1$ and $\delta_j = 0, 1$ (there are $\sim k \cdot 4^k$ many, where k = |A|).

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Classical whitehead algorithm is

- Keep applying whitehead automorphisms to given u until finding one that decreases its cyclic length.
- Repeat until all whiteheads are non-decreasing.

This is polynomial on ||u||, but exponential on the ambient rank, k.

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- 1) Codify *u* as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory)
- Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- Codify u as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- Use max-flow min-cut algorithm (classic in Computer Science).
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- Codify u as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

main idea: given $u \in F_k$, we find in polynomial time one of the whiteheads that decreases ||u|| the most possible.

Key point: How does a given Whitehead automorphism α affect the length of a given word u?

- Codify u as its Whitehead's graph (classic in Group Theory),
- 2) Codify α as a cut in this graph (\approx classic in Group Theory),
- 3) Use max-flow min-cut algorithm (classic in Computer Science),
- 4) ... put together and mix (new!).

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: $A^{\pm 1}$,
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

$$u = aba^{-1}c^{-1}bbabc^{-1}$$

Whitehead's graph

First ingredient: Whitehead's graph of a word.

Definition

Given $u \in F_k$ (cyclically reduced), its (unoriented) Whitehead graph, denoted Wh(u), is:

- vertices: A^{±1}.
- edges: for every pair of (cycl.) consecutive letters $u = \cdots xy \cdots$ put an edge between x and y^{-1} .

$$u = aba^{-1}c^{-1}bbabc^{-1}$$
,

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

$$\langle a,b,c \rangle = F_3 \rightarrow F_3$$
 a b
 $a \mapsto ab$
 $b \mapsto b$
 $c \mapsto b^{-1}cb$ a^{-1} b^{-1}

Cut in a graph

Second ingredient: Cut in a graph.

Definition

Given a Whitehead's automorphism α , we represent it as the (a, a^{-1}) -cut

 $(T = \{a\} \cup \{\text{letters that go multiplied on the right by } a\}, a)$

of the set $A^{\pm 1}$.

$$\langle a, b, c \rangle = F_3 \rightarrow F_3$$

 $a \mapsto ab$
 $b \mapsto b$
 $c \mapsto b^{-1}cb$

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Rephrasement of Wh. Lemma

Lemma (Whitehead)

Given a word $u \in F_k$ and a Whitehead automorphism α , think α as a cut in Wh(u), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a).$$

Proof: Analyzing combinatorial cases (see Lyndon-Schupp).

Example

Consider
$$u = aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha : F_3 \rightarrow F_3$ like before. We a \mapsto ab b \mapsto b c \mapsto $b^{-1}cb$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u = aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha : F_3 \rightarrow F_3$ like before. We $a \mapsto ab$ $b \mapsto b$ $c \mapsto b^{-1}cb$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Example

Consider
$$u = aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha : F_3 \rightarrow F_3$ like before. We $a \mapsto ab$ $b \mapsto b$ $c \mapsto b^{-1}cb$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \deg(b) = 7 - 4.$$

Example

Consider
$$u = aba^{-1}c^{-1}bbabc^{-1}$$
 and $\alpha : F_3 \rightarrow F_3$ like before. We $a \mapsto ab$ $b \mapsto b$ $c \mapsto b^{-1}cb$

have $\alpha(u) = aba^{-1}b^{-1}c^{-1}bbbabc^{-1}b$. Furthermore,

$$12 - 9 = \|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(b) = 7 - 4.$$

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

Third ingredient: Max-flow min-cut algorithm.

Hence, Whitehead's Minimization Problem reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a^{-1}) -cut with minimal possible capacity.

This can be done by using the classical max-flow min-cut algorithm ...

...which works in polynomial time w.r.t. the number of edges of the graph (= ||u||) and the number of vertices (= 2k).

51 / 62

Primitivity

Hence we have proved

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Corollary (Roig, V., Weil, 2007

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Primitivity

Hence we have proved

Theorem (Roig, V., Weil, 2007)

There is an algorithm which solves Whitehead Minimization Problem for F_k in time $O(n^2 k^3)$.

Corollary (Roig, V., Weil, 2007)

Given a word $u \in F_k$, one can check whether u is primitive in F_k in time $O(n^2k^3)$, where n = ||u||.

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition

Let $H \leqslant F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: A^{±1}
- hyper-edges: for every vertex v in $\Gamma(H)$, put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a),$$

where ||H|| is the number of vertices in $\Gamma(H)$.

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition

Let $H \leq F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: $A^{\pm 1}$,
- hyper-edges: for every vertex v in Γ(H), put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a)$$

where ||H|| is the number of vertices in $\Gamma(H)$.

A cyclically reduced word can be thought as a circular graph; and then, its Whitehead graph Wh(u) just describes the in-links of the vertices.

Definition

Let $H \leq F_k$ be a f.g. subgroup, and let $\Gamma(H)$ be its core graph. We define the Whitehead hyper-graph of H, denoted Wh(H), as:

- vertices: A^{±1},
- hyper-edges: for every vertex v in Γ(H), put a hyper-edge consisting on the in-link of v.

Lemma (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$ and a Whitehead automorphism α , think α as a cut in Wh(H), say $\alpha = (T, a)$, and then

$$\|\alpha(u)\| - \|u\| = \operatorname{cap}(T) - \operatorname{deg}(a),$$

where ||H|| is the number of vertices in $\Gamma(H)$.

Consider $H = \langle b, aba^{-1}, aca \rangle \leqslant F_3$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:

In fact, $\alpha(H) = \langle b, aba^{-1}, acbab \rangle$ and then

$$\Gamma(\alpha(H)) = \begin{pmatrix} b & b \\ c & b \end{pmatrix}$$

and so, $4-3=\|\alpha(H)\|-\|H\|=3-2$.

Consider $H = \langle b, aba^{-1}, aca \rangle \leqslant F_3$. Its core graph $\Gamma(H)$, and Whitehead hyper-graph Wh(H) are:

In fact, $\alpha(H) = \langle b, aba^{-1}, acbab \rangle$ and then

and so, $4-3 = \|\alpha(H)\| - \|H\| = 3-2$.

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_k$, let W = Wh(H) and then the map $\mathcal{P}(A^{\pm 1}) \to \mathbb{N}$, $T \mapsto \operatorname{cap}_W(T)$ is sub-modular.

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_k$, let W = Wh(H) and then the map $\mathcal{P}(A^{\pm 1}) \to \mathbb{N}$, $T \mapsto \text{cap}_W(T)$ is sub-modular.

56 / 62

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_k$, let W = Wh(H) and then the map $\mathcal{P}(A^{\pm 1}) \to \mathbb{N}$, $T \mapsto \text{cap}_W(T)$ is sub-modular.

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_k$, let W = Wh(H) and then the map $\mathcal{P}(A^{\pm 1}) \to \mathbb{N}$, $T \mapsto \text{cap}_W(T)$ is sub-modular.

56 / 62

So, Whitehead's Minimization Problem for subgroups reduces to:

- run over all possible multipliers, say a, (there are 2k),
- find an (a, a⁻¹)-cut with minimal possible capacity in the given hyper-graph.

Unfortunately, there is no analog of max-flow min-cut algorithm for hyper-graphs ...

...but it is still possible to find minimal cuts in polynomial time because of sub-modularity:

Observation

For every f.g. $H \leqslant F_k$, let W = Wh(H) and then the map $\mathcal{P}(A^{\pm 1}) \to \mathbb{N}$, $T \mapsto \text{cap}_W(T)$ is sub-modular.

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leqslant F_k$, in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f: \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leq F_k$, in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f \colon \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leq F_k$, in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Definition

A map $f: \mathcal{P}(V) \to \mathbb{N}$ is called sub-modular if, for every $A, B \subseteq V$, $f(A \cup B) + f(A \cap B) \leqslant f(A) + f(B)$.

Efficient minimization of sub-modular functions is an active research topic in computer science. One of the classical results is the following

Proposition

There exists a algorithm which, given a sub-modular function $f \colon \mathcal{P}(V) \to \mathbb{N}$ computes its minimum with a number of queries to evaluate f bounded above by a polynomial on |V|.

Corollary

There is an algorithm which solves Whitehead Minimization Problem for subgroups $H \leqslant F_k$, in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where n = ||H||.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where $n = \|H\|$.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Deciding free-factorness

Observation

A given subgroup $H \leqslant F_k$ of rank $r(H) = r \leqslant k$ is a free factor of F_k if and only if $\exists \varphi \in Aut(F_k)$ such that $\|\varphi(H)\| = 1$.

Corollary (Roig, V., Weil, 2007)

Given a f.g. subgroup $H \leqslant F_k$, one can check whether H is a free factor of F_k in time $O((n^2k^4 + n^3k^2)\log(nk))$, where $n = \|H\|$.

Corollary (Roig, V., Weil, 2007)

Given f.g. subgroups $H \leq K \leq F_k$, one can check whether H is a free factor of K in polynomial time w.r.t. the given generators of H and K.

Outline

- Algebraic extensions
- The bijection between subgroups and automata
- Takahasi's theorem
- 4 Algebraic closures
- 5 The first part of Whitehead algorithm made polynomial
- Generalization to subgroups
- Back to algebraic closures

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and φ ∈ Aut(K) such that φ(H) = H_{min}, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $CI_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and $\varphi \in Aut(K)$ such that $\varphi(H) = H_{min}$, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $Cl_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and $\varphi \in Aut(K)$ such that $\varphi(H) = H_{min}$, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $CI_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and φ ∈ Aut(K) such that φ(H) = H_{min}, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $CI_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and $\varphi \in Aut(K)$ such that $\varphi(H) = H_{min}$, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $CI_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Theorem (V. 2009)

Given f.g. subgroups $H \leqslant K \leqslant F_k$, one can compute the K-algebraic closure $Cl_K(H)$ of H in polynomial time w.r.t. the given generators of H and K.

- Find bases for H, and for K (say $\{x_1, \ldots, x_r\}$),
- write H in terms of $\{x_1, \ldots, x_r\}$,
- compute H_{min} and $\varphi \in Aut(K)$ such that $\varphi(H) = H_{min}$, using WMP relative to K,
- consider the smallest set of letters $X_0 \subseteq \{x_1, \dots, x_r\}$ such that $H_{min} \leq \langle X_0 \rangle$;
- now, $CI_K(H) = \varphi^{-1}(\langle X_0 \rangle)$. \square

Because...

Proposition (see I.5.4 in Lyndon-Schupp)

Let F be a free group with basis X, and let w be a word or cyclic word of minimal length (w.r.t. the action of Aut(F)). If exactly n letters occur in w then at least n letters will occur in $\varphi(w)$, for every $\varphi \in Aut(F)$.

And the similar statement is true as well, for subgroups.

Because...

Proposition (see I.5.4 in Lyndon-Schupp)

Let F be a free group with basis X, and let w be a word or cyclic word of minimal length (w.r.t. the action of Aut(F)). If exactly n letters occur in w then at least n letters will occur in $\varphi(w)$, for every $\varphi \in Aut(F)$.

And the similar statement is true as well, for subgroups.

THANKS