Automorphisms of partially commutative nilpotent R-groups.

Alexander Treyer

Sobolev Institute of Mathematics of the SB RAS, Omsk, Russia

International Algebraic Workshop on "New Algebra-Logical Methods in Solution for Systems of Equations in Algebraic Structures", August 16 — 22, 2009, Omsk, Russia

・吊り ・ラト ・ラト

Contents

Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

8 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

4 B b 4 B

Partially commutative nilpotent R-groups

Compressed graph and vertices ordering Authomorphisms of free partially commutative groups. Results

Contents

Nilpotent R-groups Normal form for elements of G_{Γ}

1 Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Nilpotent R-groups Normal form for elements of G_{Γ}

Binomial ring

A.G. Miasnikov, V.N. Remeslennikov. *Isomorphisms and elementary* properties of nilpotent powered groups (1981)

Results

Definition

R is called a binomial ring, if R is Abelian domain of integrity, R contains \mathbb{Z} as subring and for any $\lambda \in R$ and $n \in \mathbb{N}$, binomial coefficient

$$C_{\lambda}^{n} = \frac{\lambda(\lambda - 1)(\lambda - 2)\dots(\lambda - n + 1)}{n!}$$

contains in R.

Examples: Z, Q, field of zero characterisitic, ring of polinoms over field of zero characteristic.

Partially commutative nilpotent R-groups

Compressed graph and vertices ordering Authomorphisms of free partially commutative groups. Results Nilpotent *R*-groups Normal form for elements of G_{Γ}

Nilpotent R-groups

A nilpotent group G of nilpotency class m is called a R-group if for any $x \in G$ and $\lambda \in R$ there is a uniquely defined element $x^{\lambda} \in G$ and the following axioms are satisfied $(x, y, x_1, \dots, x_n \in G, \lambda, \mu \in R)$:

x¹ = x, x^λx^μ = x^{λ+μ}, (x^λ)^μ = x^{λμ}.
y⁻¹x^λy = (y⁻¹xy)^λ.
x^λ₁...x^λ_n = (x₁,...x_n)^λτ^{C²}₂(X)...τ^{C^m}_m(X), where X = {x₁,...,x_n}, τ_i(X) - i-th Petresco word. Recall that for each k ∈ N, k-th Petrsco word is defined recursively by the relation:

$$x_1^i \dots x_n^i = \tau_1^{C_i^1}(X) \tau_2^{C_i^2}(X) \dots \tau_{i-1}^{C_i^{i-1}}(X) \tau_i^{C_i^i}(X)$$

in the free group F with basis x_1, \ldots, x_n . For example,

 $\tau_1(X) = x_1 x_2 \dots x_n, \ \tau_2(X) = \prod_{i < j, \ i, j=1}^n [x_i, x_j] \ mod \ \gamma_3(F), \text{ where}$

 $\gamma_3(F)$ – third term of the lower central series of group F.

(日本) (日本) (日本)

Partially commutative nilpotent *R*-groups Compressed graph and vertices ordering

Compressed graph and vertices ordering Authomorphisms of free partially commutative groups Results Nilpotent R-groups Normal form for elements of G_{Γ}

Nilpotency class 2

We consider the case of nilpotent class 2 groups, i.e m = 2 in the definition above. So, the axiom (3) looks in the following way

$$\begin{array}{l} \boldsymbol{\beta}' \cdot x_1^{\lambda} \dots x_n^{\lambda} = (x_1, \dots x_n)^{\lambda} \tau_2^{C_{\lambda}^2}(X), \text{ where } \tau_2(x_1, \dots, x_n) = \\ \prod_{i < j, i, j = 1}^n [x_i, x_j]. \end{array}$$

Definition

$$G \in N_2$$
 if $\forall x, y, z \in G [x, y, z] = [[x, y], z] = 1.$

Denote by $N_{2,R}$ the variety of nilpotent class 2 *R*-groups.

Nilpotent R-groups Normal form for elements of G_{Γ}

Finally, define partially commutative nilpotent group in the variety $N_{2,R}$:

Results

$$G_{\Gamma} = \langle X | R_{\Gamma} \rangle_{N_{2,R}},$$

where $R_{\Gamma} = \{ [x_i, x_j] = 1 | \forall (x_i, x_j) \in E(\Gamma) \} \rangle_{N_{2,R}}$.

イロト イポト イラト イラト

Partially commutative nilpotent R-groups

Compressed graph and vertices ordering Authomorphisms of free partially commutative groups. Results

Contents

Nilpotent R-groups Normal form for elements of G_{Γ}

1 Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Partially commutative nilpotent R-groups

Compressed graph and vertices ordering Authomorphisms of free partially commutative groups Results

Normal form

Proposition

- Quotient group $\overline{G_{\Gamma}} = G_{\Gamma}/G'_{\Gamma}$ has linear vector space structure over R with basis x_1, \ldots, x_n .
- **2** Commutant G'_{Γ} has linear vector space structure over \mathbb{R} with basis $y_{ij} = [x_i, x_j]$, where $y_{ij} = [x_i, x_j] \neq 1$ in G_{Γ} and i < j.
- **(a)** Any element g of G_{Γ} can be uniquely presented in the following way

$$g = x_1^{\alpha_1} \dots x_n^{\alpha_n} \prod y_{kl}^{\beta_{kl}},\tag{1}$$

where $x_i \in X$, $y_{kl} = [x_k, x_l] \neq 1$, k < l, and $\alpha_i, \beta_{kl} \in \mathbb{R}$.

イロト イポト イラト イラト

Nilpotent R-groups Normal form for elements of G_{Γ}

Compressed graph Partial order on X

Contents

I Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Compressed graph Partial order on X

Compressed graph

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov. Orthogonal systems in finite graphs

For any $x, y \in X$ define distance d(x, y) as minimum of all path length's joining x and y. And $d(x, y) = \infty$ if x, y aren't connected.

Definition

Let $x\in X,$ define as $x^\perp=\{y\in X\mid d(x,y)\leq 1\}.$ Let $x\in X,$ define as $x^o=\{y\in X\mid d(x,y)=1\}$

・ロト ・同ト ・ヨト ・ヨト

Compressed graph Partial order on X

Compressed graph

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov. Orthogonal systems in finite graphs

For any $x, y \in X$ define distance d(x, y) as minimum of all path length's joining x and y. And $d(x, y) = \infty$ if x, y aren't connected.

Definition

Let $x\in X$, define as $x^\perp=\{y\in X\;|d(x,y)\leq 1\}.$ Let $x\in X$, define as $x^o=\{y\in X\;|d(x,y)=1\}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Compressed graph Partial order on X

Compressed graph

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov. Orthogonal systems in finite graphs

For any $x, y \in X$ define distance d(x, y) as minimum of all path length's joining x and y. And $d(x, y) = \infty$ if x, y aren't connected.

Definition

Let $x\in X$, define as $x^{\perp}=\{y\in X\;|d(x,y)\leq 1\}.$ Let $x\in X$, define as $x^o=\{y\in X\;|d(x,y)=1\}$

Definition

We write $x \sim_{\perp} y$, iff $x^{\perp} = y^{\perp}$, and $x \sim_o y$, iff $x^o = y^o$. Finally, $x \sim y$ iff $x \sim_o y$ or $x \sim_{\perp} y$.

~ - is equivalence relation on X. Let $[x] = \{y \in X | x \sim y\}$. Denote by Γ^{comp} compressed graph with vertices set $X^{comp} = \{[x] | x \in X\}$ and vertices [x] and [y] are joint iff, x and y joint in the Γ .

Theorem (A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov)

 $Aut(\Gamma)$ has the following decomposition:

$$Aut(\Gamma) = (\prod_{[x] \in X^c} S_{|[x]|}) \land Aut(\Gamma^c).$$

・ロト ・同ト ・ヨト ・ヨト

Definition

We write $x \sim_{\perp} y$, iff $x^{\perp} = y^{\perp}$, and $x \sim_o y$, iff $x^o = y^o$. Finally, $x \sim y$ iff $x \sim_o y$ or $x \sim_{\perp} y$.

 \sim - is equivalence relation on X. Let $[x] = \{y \in X | x \sim y\}.$ Denote by Γ^{comp} compressed graph with vertices set $X^{comp} = \{[x] | x \in X\}$ and vertices [x] and [y] are joint iff, x and y joint in the Γ .

Theorem (A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov)

 $Aut(\Gamma)$ has the following decomposition:

$$Aut(\Gamma) = (\prod_{[x]\in X^c} S_{|[x]|}) \land Aut(\Gamma^c).$$

Definition

We write $x \sim_{\perp} y$, iff $x^{\perp} = y^{\perp}$, and $x \sim_o y$, iff $x^o = y^o$. Finally, $x \sim y$ iff $x \sim_o y$ or $x \sim_{\perp} y$.

 \sim - is equivalence relation on X. Let $[x]=\{y\in X|x\sim y\}.$ Denote by Γ^{comp} compressed graph with vertices set $X^{comp}=\{[x]|x\in X\}$ and vertices [x] and [y] are joint iff, x and y joint in the $\Gamma.$

Theorem (A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov)

 $Aut(\Gamma)$ has the following decomposition:

$$Aut(\Gamma) = (\prod_{[x]\in X^c} S_{|[x]|}) \land Aut(\Gamma^c).$$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Compressed graph Partial order on X

Contents

I Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Compressed graph Partial order on X

Partial order on X

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov.

Definition

For any $x \in X$, denote by $ad(x) = (x^{\perp} \setminus x)^{\perp}$.

_emma

Let $x, y \in X$, then the following holds:

1) if
$$y \in ad(x)$$
, then $ad(y) \subseteq ad(x)$;

2) for any
$$x \in X$$
, $[x] \subseteq ad(x)$;

3)
$$ad(x) = ad(y)$$
 iff $[x] = [y];$

4) for any $s,t \in X$ such that $s \in ad(x), t \in ad(y)$, if [x,y] = 1, then [s,t] = 1.

Define partial order on X: we say that $x <_{ad} y$ iff $ad(x) \subsetneq ad(y)$. We say that $x \leq_{ad} y$ iff $ad(x) \subseteq ad(y)$

Compressed graph Partial order on X

Partial order on X

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov.

Definition

For any
$$x \in X$$
, denote by $ad(x) = (x^{\perp} \setminus x)^{\perp}$.

.emma

Let $x, y \in X$, then the following holds:

1) if
$$y \in ad(x)$$
, then $ad(y) \subseteq ad(x)$;

2) for any
$$x \in X$$
, $[x] \subseteq ad(x)$;

3)
$$ad(x) = ad(y)$$
 iff $[x] = [y];$

4) for any $s,t \in X$ such that $s \in ad(x), t \in ad(y)$, if [x,y] = 1, then [s,t] = 1.

Define partial order on X: we say that $x <_{ad} y$ iff $ad(x) \subsetneq ad(y)$. We say that $x \leq_{ad} y$ iff $ad(x) \subseteq ad(y)$

Partial order on X

A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov.

Definition

For any
$$x \in X$$
, denote by $ad(x) = (x^{\perp} \setminus x)^{\perp}$.

Lemma

Let $x, y \in X$, then the following holds:

1) if
$$y \in ad(x)$$
, then $ad(y) \subseteq ad(x)$;

2) for any
$$x \in X$$
, $[x] \subseteq ad(x)$;

3)
$$ad(x) = ad(y)$$
 iff $[x] = [y];$

4) for any
$$s, t \in X$$
 such that $s \in ad(x), t \in ad(y)$, if $[x, y] = 1$, then $[s, t] = 1$.

Define partial order on X: we say that $x <_{ad} y$ iff $ad(x) \subsetneq ad(y)$. We say that $x \leq_{ad} y$ iff $ad(x) \subseteq ad(y)$

Authomorphisms of free partially commutative groups.

- M.R.Laurence. A generating set for the automorphism group of a graph group
- A.J. Duncan, I.V. Kazachkov, V.N. Remeslennikov. *Authomorphisms* of *Partially Commutative Groups*
- G.A. Noskov. The image of the authomorphism group of a graph group under the abelinization map
- Other works.

イロト イポト イラト イラト

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_l(G_{\Gamma})$ Arithmeticity of $Aut_l(G_{\Gamma})$

Contents

lacksquare Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3 Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$. Structure of $Aut_l(G_{\Gamma})$. Arithmeticity of $Aut_l(G_{\Gamma})$

R-authomorphisms

We define the map ϕ on generating set $X = \{x_1, \dots, x_n\}$:

$$\phi(x_1) = x_1^{\alpha_{11}} \dots x_n^{\alpha_{1n}} c_1, \dots \\ \phi(x_n) = x_1^{\alpha_{n1}} \dots x_n^{\alpha_{nn}} c_n,$$
(2)

where $\alpha_{i,j} \in R$, and $c_i \in G'_{\Gamma}$.

Definition

Let $G \in N_{2,R}$. The map $\phi : G \mapsto G$ is called R-authomorpism, if

1) ϕ – group authomorphism;

2) for any $x \in G$ and $\alpha \in R$ holds $\phi(g^{\alpha}) = \phi(g)^{\alpha}$.

Theorem

Let $G_{\Gamma} \in N_{2,R}$ with generating set $X = \{x_1, \ldots, x_n\}$. Then the following holds:

1) exists shortly exact sequence:

$$1 \mapsto IAut(G_{\Gamma}) \mapsto Aut(G_{\Gamma}) \stackrel{f}{\mapsto} GL(n, R) \mapsto 1,$$

where f – facrorization homomorphism, $IAut(G_{\Gamma}) = \ker f$, $Aut_l(G_{\Gamma}) = Imf$ – subgroup of factor authomorphisms in GL(n, R);

2) $IAut(G_{\Gamma})$ – abelian normal subgroup, isomorphic to $G'_{\Gamma} \times \ldots \times G'_{\Gamma}$;

п раз

3) generating set of $Aut(G_{\Gamma})$ is union of generating set for $Aut_l(G_{\Gamma})$ and generating set for $IAut(G_{\Gamma})$.

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_l(G_{\Gamma})$ Arithmeticity of $Aut_l(G_{\Gamma})$

Contents

lacksquare Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3) Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_l(G_{\Gamma})$ Arithmeticity of $Aut_l(G_{\Gamma})$

Criterion to be an authomorphism

Theorem

The map $\phi: G_{\Gamma} \mapsto G_{\Gamma}$ is *R*-authomorphism iff the next conditions holds:

• Matrix
$$[\theta] = (\alpha_{ij}), i, j = 1, ..., n \text{ is } \Gamma$$
 - admissible matrix.
• Column $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ is any element of free R -module $(G'_{\Gamma})^n$.

(日) (同) (三) (三)

Theorem

- The projection map π : Aut_l(G_Γ) → Aut(Γ^c) is epimorphism. Let ker π = Aut⁰_l(G_Γ). Then Aut_l(G_Γ) = Aut⁰_l(G_Γ) > Aut(Γ^c).
- Matrices from Aut⁰_l(G_Γ) are lower block-diagonal and Aut⁰_l(G_Γ) = UT(G_Γ) × V(Γ), where UT(G_Γ) = Aut⁰_l(G_Γ) ∩ UT(n, R), and UT(n, R) – group of lower unitriangular matrices over R.

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_l(G_{\Gamma})$ Arithmeticity of $Aut_l(G_{\Gamma})$

Contents

lacksquare Partially commutative nilpotent R-groups

- Nilpotent R-groups
- Normal form for elements of G_{Γ}

2 Compressed graph and vertices ordering

- Compressed graph
- Partial order on X

3) Authomorphisms of free partially commutative groups.

4 Results

- Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$
- Structure of $Aut_l(G_{\Gamma})$
- Arithmeticity of $Aut_l(G_{\Gamma})$

Decomposition of $Aut(G_{\Gamma})$ to $Aut_l(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_l(G_{\Gamma})$ Arithmeticity of $Aut_l(G_{\Gamma})$

Arithmeticity of $Aut_l(G_{\Gamma})$

Theorem

Let R is binomial ring containt in \mathbb{C} . Then the group $Aut_l(G_{\Gamma})$ is arithmetical when R is \mathbb{Z} or field of zero characterisic.

(日) (同) (三) (三)

Decomposition of $Aut(G_{\Gamma})$ to $Aut_{l}(G_{\Gamma})$ and $IAut(G_{\Gamma})$ Structure of $Aut_{l}(G_{\Gamma})$ Arithmeticity of $Aut_{l}(G_{\Gamma})$

The end

Alexander Treyer Automorphisms of partially commutative nilpotent R-groups.

(日) (四) (王) (王)

э