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Semantic generic constructions

Let K0 be a class of finite structures of a countable predicate
language. The class K0 is endowed with a partial order relation 6
which is invariant under the transition to isomorphic structures,
connoting the property of being a self-sufficient structure, or strong
substructure, and satisfying the following axioms:

(1) if A 6 B, then A ⊆ B;

(2) if A 6 C, B ∈ K0, and A ⊆ B ⊆ C, then A 6 B;

(3) ∅ is the least element of the system (K0;6);

(4) (the amalgamation property) for any structures A,B, C ∈ K0,
having embeddings f0 : A → B and g0 : A → C such that
f0(A) 6 B and g0(A) 6 C, there are a structure D ∈ K0 and
embeddings f1 : B → D and g1 : C → D for which f1(B) 6 D,
g1(C) 6 D and f0 ◦ f1 = g0 ◦ g1.
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Semantic generic constructions

With the class K0 determined from finite structures of K0 using
amalgamation (i. e., embedding the structures B and C over A in
structures D so as to comply with the amalgamation property), we
construct a countable (K0;6)-generic modelM step by step so as
to satisfy the following:

for any finite substructure A ⊆M, there is a structure
B ∈ K0, A ⊆ B ⊆M, for which B 6M, i. e., B 6 B′ for any
structure B′ ∈ K0 with B ⊆ B′ ⊆M;
for any finite substructure A ⊆M and any structure B ∈ K0
such that A 6 B, there is a structure B′ 6M for which
B 'A B′.
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Semantic generic constructions

THEOREM (J.Baldwin, N.Shi)
For any partially ordered class (K0;6), satisfying conditions 1–4,
there exists a (K0;6)-generic model.
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Historical review

E. Hrushovski, using a modification of generic Jonsson — Fräıssé
construction, has disproved Zil’ber Conjecture constructing
examples of strongly minimal not locally modular theories in which
infinite groups are not interpreted. His original construction, which
served as a basis for building of appropriate examples and solving
other known model-theoretic problems, has given an impetus to
intensive studies of both the Hrushovski construction together with
its various (in a broad sense) modifications, capable of creating
“pathological” theories with given properties and axiomatic bases,
allowing to determine applicability bounds for that construction.
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Historical review

R.Fräıssé (France), general principles, Fräıssé limit;
B.Jonsson (Sweden), homogeneous-universal models;
E.Hrushovski (Israel), strongly minimal theories, geometries,
fusions of fields, superstable ω-categorical theories;
J.T.Baldwin (USA), projective planes, general principles,
properties, classifications, fields, geometries, abstract
elementary classes;
B.Poizat (France), general principles, properties,
classifications, geometries, fields;
D.W.Kueker (USA), C.Laskowski (USA), general principles,
properties;
F.Wagner (France), general principles, properties;
B.Herwig (Germany), weight ω in small stable theories;
M.Itai (USA), projective planes;
N.Shi (USA), general principles, properties;
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Historical review

B.Zilber (Great Britain), geometries, fields;
A.Pillay (USA), simple theories, preservation of ω-categoricity;
A.Tsuboi (Japan), preservation of ω-categoricity, strong
amalgamation property;
M.Ziegler (Germany), fields, fusions;
A.Baudisch (Germany), groups, fields, fusions;
Z.Chatzidakis (France), simple theories;
S.Shelah (Israel), abstract elementary classes;
M.J.de Bonis (USA), A.Nesin (Turkey), almost strongly
minimal generalized n-gons;
K.Holland (USA), fields, fusions, model completeness;
V.V.Verbovskiy (Kazakhstan), elimination of imaginaries,
CM-triviality;
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Historical review

K.Ikeda (Japan), projective planes, strong amalgamation
property;
H.Kikyo (Japan), strong amalgamation property;
I.Yoneda (Japan), CM-triviality;
M.Pourmahdian (Iran), simple theories;
D.M.Evans (Great Britain), ω-categorical structures;
A.Hasson (Great Britain), interpretations of structures with
the definable multiplicity property, fusions;
A.M.Vershik (Russia), isometries;
S.Solecki (USA), isometries;
A.Martin-Pizarro (Germany), fields, fusions;
M.Hils (Germany), fusions.
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Syntactic generic constructions

We fix an at most countable language L and consider a class T0 of
(complete or incomplete) types Φ(A) (without free variables) over
finite sets A such that ϕ(ā) ∈ Φ(A) or ¬ϕ(ā) ∈ Φ(A) for any
quantifier-free formula ϕ(x̄) and any tuple ā ∈ A. Suppose that the
class T0 is equipped with a partial order 6, closed under bijective
substitutions [Φ(A)]AA′ of pairwise distinct constants in A′ for
constants in A into types Φ(A) ∈ T0. Furthermore, we assume that
results of bijective substitutions [Φ(A)]AX of sets X of variables for
constants in A into types Φ(A) ∈ T0 (over all sets A) form
a countable set.
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Syntactic generic constructions

A partially ordered class (T0;6) is said to be generic if T0 is closed
under intersections and satisfies the following:

if Φ 6 Ψ, then Φ ⊆ Ψ;

if Φ 6 X, Ψ ∈ T0, and Φ ⊆ Ψ ⊆ X, then Φ 6 Ψ;

some type Φ0(∅) is the least element of the system (T0;6);

(the t-amalgamation property) for any types Φ(A), Ψ(B),
X(C ) ∈ T0, if there exist injections f0 : A→ B and
g0 : A→ C with [Φ(A)]Af0(A) 6 Ψ(B) and [Φ(A)]Ag0(A) 6 X(C ),
then there are a type Θ(D) ∈ T0 and injections f1 : B → D
and g1 : C → D for which [Ψ(B)]Bf1(B) 6 Θ(D),
[X(C )]Cg1(C) 6 Θ(D) and f0 ◦ f1 = g0 ◦ g1;
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Syntactic generic constructions

(the local realizability property) if Φ(A) ∈ T0 and
Φ(A) ` ∃x ϕ(x) (respectively, t is a term of language L ∪ A
containing no free variables), then there are a type
Ψ(B) ∈ T0, Φ(A) 6 Ψ(B), and an element b ∈ B for which
Ψ(B) ` ϕ(b) ((t ≈ b) ∈ Ψ(B));

(the t-uniqueness property) for any types Φ(A), Ψ(A) ∈ T0 if
the set Φ(A) ∪Ψ(A) is consistent then Φ(A) = Ψ(A).
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Self-sufficiency

Let T0 be a class of types, P be a class of models, andM be a
model in P. The class T0 is cofinal in the modelM if, for each
finite set A ⊆ M, there are a finite set B , A ⊆ B ⊆ M, and a type
Φ(B) ∈ T0 such thatM |= Φ(B). The class T0 is cofinal in P if
T0 is cofinal in every model of P. We denote by T0 the class of all
modelsM with the condition that T0 is cofinal inM, and by P a
subclass of T0 such that each type Φ ∈ T0 is true for some model
in P.
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Self-sufficiency

LetM be a model in T0, A and B be finite sets inM with A ⊆ B .
We call A a strong subset of the set B (in the modelM), and
write A 6 B , if there exist types Φ(A),Ψ(B) ∈ T0, for which
Φ(A) 6 Ψ(B) andM |= Ψ(B).

A finite set A is called a strong subset of a set M0 ⊆ M (in the
modelM), where A ⊆ M0, if A 6 B for any finite set B such that
A ⊆ B ⊆ M0 and Φ(A) ⊆ Ψ(B) for some types Φ(A),Ψ(B) ∈ T0
withM |= Ψ(B). If A is a strong subset of M0 then, as above, we
write A 6 M0.

If A 6 M inM then we refer to A as a self-sufficient set (inM).
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Generic models

A modelM∈ P has finite closures with respect to the class
(T0;6) if any finite set A ⊆ M is contained in some self-sufficient
set inM. A class P has finite closures with respect to the class
(T0;6) if each model in P has finite closures.

A countable modelM∈ T0 is (T0;6)-generic if it satisfies the
following conditions:
(a)M has finite closures;
(b) if A ⊆ M is a finite set, Φ(A),Ψ(B) ∈ T0,M |= Φ(A) and
Φ(A) 6 Ψ(B), then there exists a set B ′ 6 M such that A ⊆ B ′

andM |= Ψ(B ′).
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Generic models

THEOREM
For any generic class (T0;6), there exists a (T0;6)-generic model.

THEOREM
For any (K0;6)-generic modelM, there exists a quantifier-free
class (T0;6′) such thatM is (T0;6′)-generic.
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Self-sufficient classes

A generic class (T0;6) is self-sufficient if the following axiom holds:

if Φ,Ψ,X ∈ T0, Φ 6 Ψ, and X ⊆ Ψ, then Φ ∩X 6 X.
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t-Covering property

Below we denote by (T0;6) a self-sufficient generic class, byM a
(T0;6)-generic model, by T a theory Th(M), and by K a subclass
of T0 consisting of all models of the theory T .
A self-sufficient class (T0;6) has the t-covering property if

each type Φ(X ) of theory T is deduced from some type
[ΨΦ(B)]BX∪Y , where ΨΦ(B) ∈ T0.
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Closures

Let K be a class having finite closures,M be a model in K,
and S be a set inM. The least (by inclusion) closed set inM,
containing S , is called an intrinsic closure of S inM and is denoted
by iclM(S), or by S , if it is clear from the context which of the
modelsM is in point. If the set S is finite then it is referred to as
a self-sufficient closure of the set S . A type in the class T0,
corresponding to the self-sufficient closure A of a set A, is denoted
by Φ(A). If Φ(A) ∈ T0 andM |= Φ(A), then the type Φ(A) is
called a self-sufficient closure of the type Φ(A).

S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS



Closures and homogeneity

THEOREM
If the class K has finite closures then for any modelM∈ K and
any finite set A ⊆ M there exists a self-sufficient closure A of A.
Moreover, A ⊆ aclM(A).

COROLLARY.
If the class K has finite closures then the generic modelM is
homogeneous.
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Genericity of countable homogeneous models

A generic class (T0;6) is hereditary if T0 consists of types Φ(A)
containing all possible formulas describing a number of copies
of a system of elements of a set B over a system of elements of a
set A, and interrelations of elements of copies for each set B ⊇ A,
where a respective type Ψ(B) belongs to T0 and satisfies
Φ(A) 6 Ψ(B).
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Genericity of countable homogeneous models

THEOREM
Every at most countable, homogeneous (saturated) algebraic
systemM is a (T0;6)-generic model for some hereditary generic
class (T0;6) (with the t-covering property).

COROLLARY.
Every complete countable theory is generic.
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The uniform t-amalgamation property and saturated generic
models

Let (T0;6) be a self-sufficient class satisfying the following
conditions:

for any type Φ(A) ∈ T0, the type Φ(A) yields a formula χΦ(A)
describing the self-sufficient condition for the closure Φ(A);
moreover, χΦ(A) also contains a formula which is deducible
from Φ(A) and describes an upper bound for the cardinality of
the set A;
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The uniform t-amalgamation property and saturated generic
models

for any self-sufficient types Φ(A) and Ψ(B), where
Φ(A) 6 Ψ(B), and for any formula ψ(X ,Y ) in Ψ(X ∪ Y )
(here, X and Y are disjoint sets of variables, bijective with sets
A and B \ A respectively), there exists a formula ϕ(X ) which
is deducible from Φ(X ) and is such that the following formula
holds true inM:

∀X ((χΦ(X ) ∧ ϕ(X ))→ ∃Y (χΨ(X ,Y ) ∧ ψ(X ,Y ))).

If the above conditions are satisfied then we say that the class
(T0;6) has the uniform t-amalgamation property.
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The uniform t-amalgamation property and saturated generic
models

THEOREM
If (T0;6) is a self-sufficient class having the uniform
t-amalgamation property and the class K has finite closures, then
the (T0;6)-generic modelM is ω-saturated. Moreover, any finite
set A ⊆ M is extendable to its self-sufficient closure A ⊆ M, the
type tp(A) contains the type Φ(Y ) for a self-sufficient type Φ(A),
and Φ(Y ) ` tp(A).
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Fusions

Let (T0;60), (T1;61), and (T2;62) be generic classes of
languages L0, L1, and L2 respectively, L0 = L1 ∩ L2,
60 = 61 ∩ 62. A generic class (T3;63) of language L1 ∪ L2, such
that (T3;63) � Li = (Ti ;6i ), i = 1, 2, is said to be a fusion of
classes (T1;61) and (T2;62) over (T0;60). In this case, a
(T3;63)-generic model is a fusion of (T1;61)- and
(T2;62)-generic models.
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Hrushovski style fusions

Hrushovski style fusions of generic classes are defined by
non-negative linear prerank functions δi for classes (Ti ;6i ),
i = 0, 1, 2, with non-negative linear prerank functions

δ(A) = δ1(A) + δ2(A)− δ0(A),

of fusions, where δi (A) = |A| − αi · |Ri (A)|, αi ∈ R+, Ri (A) is the
number of tuples, being connected by predicates on A, i = 0, 1, 2.
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Theories with finitely many countable models

Let T be a complete first order theory, I (T , λ) be the number of
pairwise nonisomorphic models of T and of cardinality λ.

Remind the characterization for I (T , ω) = 1 (T is a countably
categorical theory).

THEOREM (C. Ryll-Nardzewski)
A theory T is countably categorical iff for any n ∈ ω the set of
types of T and of n fixed variables is finite (|Sn(T )| < ω).

Ryll-Nardzewski function: a function f ∈ ωω such that
f (n) = |Sn(T )|.

If 1 < I (T , ω) < ω then the theory T is called Ehrenfeucht.
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Problems on Ehrenfeucht theories

PROBLEM
ON CHARACTERIZATION OF EHRENFEUCHT THEORIES.

LACHLAN PROBLEM
ON EXISTENCE OF STABLE EHRENFEUCHT THEORIES.

A theory is called stable if it doesn’t have formulas ϕ(x̄ , ȳ) and
tuples ān, b̄n, n ∈ ω, such that

|= ϕ(āi , b̄j) ⇐⇒ i ≤ j .
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Historical review

A.Ehrenfeucht (Poland), 1961 (examples);
R.Vaught (USA), 1961 (I (T , ω) 6= 2);
M.Morley (USA), 1965, J.T.Baldwin (USA), A.H.Lachlan
(Canada), 1971 (I (T , ω) = 1 or ≥ ω for uncountably
categorical theories);
E.A.Palyutin (USSR), 1971 (countably categorical universals);
A.H.Lachlan (Canada), 1973 (I (T , ω) = 1 or ≥ ω for
superstable theories);
M.G.Peretyat’kin (USSR), 1973 (decidable Ehrenfeucht
theories, new examples), 1980 (constant expansions and
Ehrenfeuchtness);
M.Benda (Czechoslovakia), 1974 (Ehrenfeuchtness implies
existence of powerful types);
D.Lascar (France), 1976 (I (T , ω) = 1 or ≥ ω for superstable
theories), 1982 (finite Rudin—Keisler preorders for Ehrenfeucht
theories);
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Historical review

R.Woodrow (Canada), 1976 (sufficient conditions for theories
to be like Ehrenfeucht example with three countable models),
1978, (constant expansions and Ehrenfeuchtness);
S.Shelah (Israel), 1978 (I (T , ω) = 1 or ≥ ω for superstable
theories);
A.Pillay (Great Britain, USA), 1978 (I (T , ω) ≥ 4 for theories
with infinite constantly defined sets), 1980 (dense partial order
for Ehrenfeucht theories with small number of links), 1983
(I (T , ω) = 1 or ≥ ω for normal theories), 1989 (I (T , ω) = 1
or ≥ ω for 1-based theories),
T.G.Mustafin (USSR), 1981 (I (T , ω) = 1 or ≥ ω for theories
with superstable types);
J.Saffe (Germany), 1981 (I (T , ω) = 1 or ≥ ω for superstable
theories);
T.Millar (USA), 1981 (constant expansions and
Ehrenfeuchtness); 1985 (decidable Ehrenfeucht theories);
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Historical review

B.Omarov (USSR), 1983 (constant expansions and
Ehrenfeuchtness);

C.J.Ash, T. Millar (USA), 1983 (constructive models of
Ehrenfeucht theories);

A.Tsuboi (Japan), 1985 (any Ehrenfeucht theory being a union
of ω-categorical theories is unstable), 1986 (I (T , ω) = 1 or
≥ ω for unions of pseudo-superstable theories);

S.Thomas (USA), 1986 (constant expansions and
Ehrenfeuchtness);

E.Hrushovski (Israel), 1989 (I (T , ω) = 1 or ≥ ω for finitely
based theories);

A.A.Vikent’ev (USSR), 1989 (inheritance of
non-Ehrenfeuchtness from non-Ehrenfeucht formula
restrictions);
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Historical review

R.Reed (USA), 1991 (decidable Ehrenfeucht theories);

B.Herwig (Germany), J.Loveys (USA), A.Pillay (USA),
P.Tanović (Yugoslavia), F.Wagner (Germany), 1992
(I (T , ω) = 1 or ≥ ω for stable theories without dense forking
chains);

S.S.Goncharov (Russia), M.Pourmahdian (Iran), 1995
(finiteness of rank for any Ehrenfeucht theory);

B.Herwig (Germany), 1995 (small stable theories with infinite
weight);

B.Khoussainov, A.Nies (New Zealand), R.A.Shore (USA),
1997 (recursive models of Ehrenfeucht theories);

K.Ikeda (Japan), A.Pillay (USA), A.Tsuboi (Japan), 1998
(dense linear orders in almost ω-categorical theories with three
countable models);
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Historical review

B.Kim (USA), 1999 (I (T , ω) = 1 or ≥ ω for supersimple
theories);

P.Tanović (Yugoslavia), 2001 (I (T , ω) ≥ ω for stable theories
with an infinite set of pairwise different constants);

S.Lempp, T.Slaman, 2004 (Π1
1-completeness of Ehrenfeucht

property);

W.Calvert, V.S.Harizanov, J.F.Knight, S.Miller (USA), 2005
(the complexity of index sets of classical Ehrenfeucht theories);

P.Tanović (Serbia), 2006 (a countable, complete, first-order
theory with infinite dcl(∅) and precisely three non-isomorphic
countable models interprets a variant of Ehrenfeucht’s or
Peretyat’kin’s example);
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Historical review

P.Tanović (Serbia), 2009 (a presence of types directed by
constants guaranties the maximal number of non-isomorphic
countable models of theory;
proof of the PILLAY CONJECTURE: if T is the elementary
diagram of a countable model then I (T , ω) ≥ ω);

A.N.Gavryushkin (Russia), 2006–2009 (computable models of
Ehrenfeucht theories).
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Ehrenfeucht example

M = 〈Q, <, cn〉n∈ω, cn < cn+1,

I (Th(M), ω) = 3:

lim
n→∞

cn =∞ (the prime model);

lim
n→∞

cn ∈ Q (the prime model

over a realization of nonisolated 1-type);
lim

n→∞
cn ∈ Ir (the saturated model).
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Properties of theories with finitely many countable models

A type p(x̄) ∈ S(T ) is called powerful type of theory T if for any
modelsM of T realizing p the modelM realizes any type
q ∈ S(T ) :M |= S(T ).
If I (T , ω) < ω then T has a powerful type.

An existence of powerful type implies the smallness of theory T
i.e. the set S(T ) is countable. It also implies that there are prime
modelsMā over tuples ā for any type p ∈ S(T ) and any its
realization ā. Since all prime models over realizations of p are
isomorphic, these models are denoted byMp.
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Basic characteristics for theories with finitely many
countable models

For any types p, q ∈ S(T ) we write p ≤RK q and say that p is not
more than q under the Rudin — Keisler preorder ifMq has a
realization of type p. At the same time we writeMp ≤RK Mq if
p ≤RK q. By RK(T ) we denote the set of all isomorphism types of
modelsMp with the RK -relation induced by the relation ≤RK for
modelsMp.
We say that modelsMp andMq are RK-equivalent if

Mp ≤RK Mq andMq ≤RK Mp.

Isomorphism types M1 and M2 from RK(T ) are RK-equivalent:

M1 ∼RK M2,

if their representatives are RK -equivalent.
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Basic characteristics for theories with finitely many
countable models

A modelM is (strongly) limit over a type p ifM is a union of an
elementary chain (Mn)n∈ω such thatMn 'Mp, n ∈ ω, and
M 6'Mp.
Let RK(T ) be a finite system. For any class M̃ ∈ RK(T )/∼RK
consisting of isomorphism types of RK -equivalent models
Mp1 , . . . ,Mpn we denote by IL(M̃) the number of pairwise
non-isomorphic limit models each of which is limit over some
type pi .
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Syntactic characterization of theories with finitely many
countable models

THEOREM

For any countable complete theory T the following conditions are equivalent:
(1) I (T , ω) < ω;
(2) T is small, |RK(T )| < ω and IL(M̃) < ω for any M̃ ∈ RK(T )/∼RK .
If the condition (1) (or (2)) is true, then T satisfies the following conditions:
(a) RK(T ) has the least element M0 (the isomorphism type of a prime model)
and IL(M̃0) = 0;
(b) RK(T ) has the greatest ∼RK -class M̃1 (the class of isomorphism types
of all prime models over realizations of powerful types), and |RK(T )| > 1
implies IL(M̃1) ≥ 1;
(c) if |M̃| > 1 then IL(M̃) ≥ 1.
Moreover the following decomposition formula is true:

I (T , ω) = |RK(T )|+
|RK(T )/∼RK |−1∑

i=0

IL(M̃i ),

where M̃0, . . . , ˜M|RK(T )/∼RK |−1 are all elements of the partially ordered
set RK(T )/∼RK .
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Realization of basic characteristics for theories with finitely
many countable models

THEOREM
Let 〈X ;≤〉 be a finite preordered set with the least element x0 and
the greatest class x̃1 in the ordered factor-set 〈X ;≤〉/∼ by the
relation ∼ (where x ∼ y ⇔ x ≤ y and y ≤ x), f : X/∼→ ω be a
function (a distribution function) satisfying the following conditions:
(a) f (x̃0) = 0;
(b) |X | > 1 implies f (x̃1) ≥ 1.
(c) |ỹ | > 1 implies f (ỹ) ≥ 1.
Then there exists a stable (unstable) theory T and an isomorphism
g : 〈X ;≤〉 →̃RK(T ) such that IL(g(ỹ)) = f (ỹ) for any ỹ ∈ X/∼.
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Solution of the Lachlan Problem

THEOREM
For any n ∈ ω \ {0, 2} there exists a stable theory Tn with
I (Tn, ω) = n.
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Language

unary disjoint predicates Colm, m ∈ ω, and disjoint P1, . . . ,Pn,

` ∀x
n∨

i=1
Pi (x), with given number n of prime models over

realizations of non-principal 1-types p1(x), . . . , pn(x);

the countable set of pairwise disjoint antisymmetric irreflexive
binary relations Qn, n ∈ ω defining acyclic digraphs with
unbounded lengths of shortest Q∗-routes (Q∗ 


⋃
n∈ω

Qn) on

the structures of pi (x) and on their neighbourhoods;
the countable set of pairwise disjoint symmetric irreflexive
binary relations Pi ,k,l , i , k ∈ ω, l = 1, . . . , n, allowing to

connect elements a of infinite color
(
|=
∧

m∈ω
¬Colm(a)

)
with

elements of finite colors m by principal formulas over a;
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Language

the countable set of pairwise disjoint symmetric irreflexive
binary relations Rj , j ∈ ω, connecting only elements of the
same color and the same Pi , guaranteing the coincidence
of prime models over realizations of pi (x) if these realizations
are connected by Rj ;

predicates R ′s , s ∈ ω, guaranteing realization-equivalence of
n∨

i=1
pi with all nonprincipal types.
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Tools and objects

syntactic modifications of Hrushovski — Herwig generic
construction;

syntactic modifications of Hrushovski fusion;
powerful directed graphs with almost inessential ordered colors;
expansions for realizations of non-principal types in prime
models over 1-types;
corealization amalgams.
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Book

The results and generalizations for the class of all small theories are
presented in:
[Sudoplatov S.V. The Lachlan Problem. — Novosibirsk, 2008. —
246 p.]

The book is available in:
http://www.math.nsc.ru/∼sudoplatov/lachlan 03 09 2008.pdf
(in Russian),
http://www.math.nsc.ru/∼sudoplatov/lachlan eng 03 09 2008.pdf
(in English).
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