SYNTACTIC GENERIC CONSTRUCTIONS AND EHRENFEUCHT THEORIES

S.V. Sudoplatov

Sobolev Institute of Mathematics, Novosibirsk

International Algebraic Workshop "New Algebra-Logical Methods in Solution for Systems of Equations in Algebraic Structures" Omsk, Russia August 19, 2009

(1) if $\mathcal{A} \leq \mathcal{B}$, then $\mathcal{A} \subseteq \mathcal{B}$;

(1) if
$$\mathcal{A} \leq \mathcal{B}$$
, then $\mathcal{A} \subseteq \mathcal{B}$;

(2) if $\mathcal{A} \leqslant \mathcal{C}$, $\mathcal{B} \in K_0$, and $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C}$, then $\mathcal{A} \leqslant \mathcal{B}$;

(1) if
$$\mathcal{A} \leqslant \mathcal{B}$$
, then $\mathcal{A} \subseteq \mathcal{B}$;

(2) if
$$\mathcal{A} \leqslant \mathcal{C}$$
, $\mathcal{B} \in \mathbf{K}_0$, and $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C}$, then $\mathcal{A} \leqslant \mathcal{B}$;

(3) \varnothing is the least element of the system (K₀; \leqslant);

(1) if
$$\mathcal{A} \leqslant \mathcal{B}$$
, then $\mathcal{A} \subseteq \mathcal{B}$;

(2) if
$$\mathcal{A} \leq \mathcal{C}$$
, $\mathcal{B} \in \mathbf{K}_0$, and $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C}$, then $\mathcal{A} \leq \mathcal{B}$;

(3) \varnothing is the least element of the system (K₀; \leqslant);

(4) (the amalgamation property) for any structures $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathsf{K}_0$, having embeddings $f_0 : \mathcal{A} \to \mathcal{B}$ and $g_0 : \mathcal{A} \to \mathcal{C}$ such that $f_0(\mathcal{A}) \leq \mathcal{B}$ and $g_0(\mathcal{A}) \leq \mathcal{C}$, there are a structure $\mathcal{D} \in \mathsf{K}_0$ and embeddings $f_1 : \mathcal{B} \to \mathcal{D}$ and $g_1 : \mathcal{C} \to \mathcal{D}$ for which $f_1(\mathcal{B}) \leq \mathcal{D}$, $g_1(\mathcal{C}) \leq \mathcal{D}$ and $f_0 \circ f_1 = g_0 \circ g_1$.

With the class K_0 determined from finite structures of K_0 using *amalgamation* (i. e., embedding the structures \mathcal{B} and \mathcal{C} over \mathcal{A} in structures \mathcal{D} so as to comply with the amalgamation property), we construct a countable (K_0 ; \leq)-generic model \mathcal{M} step by step so as to satisfy the following:

With the class K_0 determined from finite structures of K_0 using *amalgamation* (i. e., embedding the structures \mathcal{B} and \mathcal{C} over \mathcal{A} in structures \mathcal{D} so as to comply with the amalgamation property), we construct a countable (K_0 ; \leq)-generic model \mathcal{M} step by step so as to satisfy the following:

• for any finite substructure $\mathcal{A} \subseteq \mathcal{M}$, there is a structure $\mathcal{B} \in \mathbf{K}_0$, $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{M}$, for which $\mathcal{B} \leqslant \mathcal{M}$, i. e., $\mathcal{B} \leqslant \mathcal{B}'$ for any structure $\mathcal{B}' \in \mathbf{K}_0$ with $\mathcal{B} \subseteq \mathcal{B}' \subseteq \mathcal{M}$;

With the class K_0 determined from finite structures of K_0 using *amalgamation* (i. e., embedding the structures \mathcal{B} and \mathcal{C} over \mathcal{A} in structures \mathcal{D} so as to comply with the amalgamation property), we construct a countable (K_0 ; \leq)-generic model \mathcal{M} step by step so as to satisfy the following:

- for any finite substructure $\mathcal{A} \subseteq \mathcal{M}$, there is a structure $\mathcal{B} \in \mathbf{K}_0$, $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{M}$, for which $\mathcal{B} \leqslant \mathcal{M}$, i. e., $\mathcal{B} \leqslant \mathcal{B}'$ for any structure $\mathcal{B}' \in \mathbf{K}_0$ with $\mathcal{B} \subseteq \mathcal{B}' \subseteq \mathcal{M}$;
- for any finite substructure $\mathcal{A} \subseteq \mathcal{M}$ and any structure $\mathcal{B} \in \mathsf{K}_0$ such that $\mathcal{A} \leqslant \mathcal{B}$, there is a structure $\mathcal{B}' \leqslant \mathcal{M}$ for which $\mathcal{B} \simeq_{\mathcal{A}} \mathcal{B}'$.

THEOREM (J.Baldwin, N.Shi)

For any partially ordered class $(K_0; \leqslant)$, satisfying conditions 1–4, there exists a $(K_0; \leqslant)$ -generic model.

S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS

E. Hrushovski, using a modification of generic Jonsson — Fraïssé construction, has disproved Zil'ber Conjecture constructing examples of strongly minimal not locally modular theories in which infinite groups are not interpreted. His original construction, which served as a basis for building of appropriate examples and solving other known model-theoretic problems, has given an impetus to intensive studies of both the *Hrushovski construction* together with its various (in a broad sense) modifications, capable of creating "pathological" theories with given properties and axiomatic bases, allowing to determine applicability bounds for that construction.

Historical review

- R.Fraïssé (France), general principles, Fraïssé limit;
- B.Jonsson (Sweden), homogeneous-universal models;
- E.Hrushovski (Israel), strongly minimal theories, geometries, fusions of fields, superstable ω-categorical theories;
- J.T.Baldwin (USA), projective planes, general principles, properties, classifications, fields, geometries, abstract elementary classes;
- B.Poizat (France), general principles, properties, classifications, geometries, fields;
- D.W.Kueker (USA), C.Laskowski (USA), general principles, properties;
- F.Wagner (France), general principles, properties;
- B.Herwig (Germany), weight ω in small stable theories;
- M.Itai (USA), projective planes;
- N.Shi (USA), general principles, properties;

Historical review

- B.Zilber (Great Britain), geometries, fields;
- A.Pillay (USA), simple theories, preservation of ω -categoricity;
- A.Tsuboi (Japan), preservation of ω-categoricity, strong amalgamation property;
- M.Ziegler (Germany), fields, fusions;
- A.Baudisch (Germany), groups, fields, fusions;
- Z.Chatzidakis (France), simple theories;
- S.Shelah (Israel), abstract elementary classes;
- M.J.de Bonis (USA), A.Nesin (Turkey), almost strongly minimal generalized *n*-gons;
- K.Holland (USA), fields, fusions, model completeness;
- V.V.Verbovskiy (Kazakhstan), elimination of imaginaries, CM-triviality;

Historical review

- K.Ikeda (Japan), projective planes, strong amalgamation property;
- H.Kikyo (Japan), strong amalgamation property;
- I.Yoneda (Japan), CM-triviality;
- M.Pourmahdian (Iran), simple theories;
- D.M.Evans (Great Britain), ω-categorical structures;
- A.Hasson (Great Britain), interpretations of structures with the definable multiplicity property, fusions;
- A.M.Vershik (Russia), isometries;
- S.Solecki (USA), isometries;
- A.Martin-Pizarro (Germany), fields, fusions;
- M.Hils (Germany), fusions.

We fix an at most countable language L and consider a class T_0 of (complete or incomplete) types $\Phi(A)$ (without free variables) over finite sets A such that $\varphi(\bar{a}) \in \Phi(A)$ or $\neg \varphi(\bar{a}) \in \Phi(A)$ for any quantifier-free formula $\varphi(\bar{x})$ and any tuple $\bar{a} \in A$. Suppose that the class T_0 is equipped with a partial order \leq , closed under bijective substitutions $[\Phi(A)]_{A'}^A$ of pairwise distinct constants in A' for constants in A into types $\Phi(A) \in T_0$. Furthermore, we assume that results of bijective substitutions $[\Phi(A)]_X^A$ of sets X of variables for constants in A into types $\Phi(A) \in T_0$ (over all sets A) form a countable set.

• • = • • = •

크

Syntactic generic constructions

A partially ordered class $(T_0; \leq)$ is said to be *generic* if T_0 is closed under intersections and satisfies the following:

• if $\Phi \leqslant \Psi$, then $\Phi \subseteq \Psi$;

크

- if $\Phi \leqslant \Psi$, then $\Phi \subseteq \Psi$;
- if $\Phi \leqslant X$, $\Psi \in T_0$, and $\Phi \subseteq \Psi \subseteq X$, then $\Phi \leqslant \Psi$;

- if $\Phi \leqslant \Psi$, then $\Phi \subseteq \Psi$;
- if $\Phi \leqslant X$, $\Psi \in T_0$, and $\Phi \subseteq \Psi \subseteq X$, then $\Phi \leqslant \Psi$;
- some type $\Phi_0(\emptyset)$ is the least element of the system $(T_0; \leqslant)$;

- if $\Phi \leqslant \Psi$, then $\Phi \subseteq \Psi$;
- if $\Phi \leqslant X$, $\Psi \in T_0$, and $\Phi \subseteq \Psi \subseteq X$, then $\Phi \leqslant \Psi$;
- some type $\Phi_0(\emptyset)$ is the least element of the system $(T_0; \leqslant)$;
- (the *t*-amalgamation property) for any types $\Phi(A)$, $\Psi(B)$, $X(C) \in T_0$, if there exist injections $f_0 : A \to B$ and $g_0 : A \to C$ with $[\Phi(A)]_{f_0(A)}^A \leq \Psi(B)$ and $[\Phi(A)]_{g_0(A)}^A \leq X(C)$, then there are a type $\Theta(D) \in T_0$ and injections $f_1 : B \to D$ and $g_1 : C \to D$ for which $[\Psi(B)]_{f_1(B)}^B \leq \Theta(D)$, $[X(C)]_{g_1(C)}^C \leq \Theta(D)$ and $f_0 \circ f_1 = g_0 \circ g_1$;

伺 と く き と く き と

(the local realizability property) if Φ(A) ∈ T₀ and Φ(A) ⊢ ∃x φ(x) (respectively, t is a term of language L ∪ A containing no free variables), then there are a type Ψ(B) ∈ T₀, Φ(A) ≤ Ψ(B), and an element b ∈ B for which Ψ(B) ⊢ φ(b) ((t ≈ b) ∈ Ψ(B));

- (the local realizability property) if Φ(A) ∈ T₀ and Φ(A) ⊢ ∃x φ(x) (respectively, t is a term of language L ∪ A containing no free variables), then there are a type Ψ(B) ∈ T₀, Φ(A) ≤ Ψ(B), and an element b ∈ B for which Ψ(B) ⊢ φ(b) ((t ≈ b) ∈ Ψ(B));
- (the *t*-uniqueness property) for any types Φ(A), Ψ(A) ∈ T₀ if the set Φ(A) ∪ Ψ(A) is consistent then Φ(A) = Ψ(A).

Let T_0 be a class of types, P be a class of models, and \mathcal{M} be a model in P. The class T_0 is *cofinal* in the model \mathcal{M} if, for each finite set $A \subseteq \mathcal{M}$, there are a finite set $B, A \subseteq B \subseteq \mathcal{M}$, and a type $\Phi(B) \in T_0$ such that $\mathcal{M} \models \Phi(B)$. The class T_0 is *cofinal* in P if T_0 is cofinal in every model of P. We denote by \overline{T}_0 the class of all models \mathcal{M} with the condition that T_0 is cofinal in \mathcal{M} , and by P a subclass of \overline{T}_0 such that each type $\Phi \in T_0$ is true for some model in P.

Let \mathcal{M} be a model in $\overline{\mathbf{T}}_0$, A and B be finite sets in \mathcal{M} with $A \subseteq B$. We call A a *strong subset* of the set B (in the model \mathcal{M}), and write $A \leq B$, if there exist types $\Phi(A), \Psi(B) \in \mathbf{T}_0$, for which $\Phi(A) \leq \Psi(B)$ and $\mathcal{M} \models \Psi(B)$.

A finite set A is called a *strong subset* of a set $M_0 \subseteq M$ (in the model \mathcal{M}), where $A \subseteq M_0$, if $A \leq B$ for any finite set B such that $A \subseteq B \subseteq M_0$ and $\Phi(A) \subseteq \Psi(B)$ for some types $\Phi(A), \Psi(B) \in \mathbf{T}_0$ with $\mathcal{M} \models \Psi(B)$. If A is a strong subset of M_0 then, as above, we write $A \leq M_0$.

If $A \leq M$ in \mathcal{M} then we refer to A as a *self-sufficient set* (in \mathcal{M}).

A model $\mathcal{M} \in \mathbf{P}$ has *finite closures* with respect to the class $(\mathbf{T}_0; \leqslant)$ if any finite set $A \subseteq M$ is contained in some self-sufficient set in \mathcal{M} . A class \mathbf{P} has *finite closures* with respect to the class $(\mathbf{T}_0; \leqslant)$ if each model in \mathbf{P} has finite closures.

э

A model $\mathcal{M} \in \mathbf{P}$ has *finite closures* with respect to the class $(\mathbf{T}_0; \leqslant)$ if any finite set $A \subseteq M$ is contained in some self-sufficient set in \mathcal{M} . A class \mathbf{P} has *finite closures* with respect to the class $(\mathbf{T}_0; \leqslant)$ if each model in \mathbf{P} has finite closures.

A countable model $\mathcal{M} \in \overline{T}_0$ is $(T_0; \leqslant)$ -generic if it satisfies the following conditions:

(a) \mathcal{M} has finite closures;

(b) if $A \subseteq M$ is a finite set, $\Phi(A), \Psi(B) \in \mathbf{T}_0$, $\mathcal{M} \models \Phi(A)$ and $\Phi(A) \leq \Psi(B)$, then there exists a set $B' \leq M$ such that $A \subseteq B'$ and $\mathcal{M} \models \Psi(B')$.

THEOREM

For any generic class $(T_0; \leq)$, there exists a $(T_0; \leq)$ -generic model.

S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS

(日本)

크

THEOREM

For any generic class $(T_0; \leqslant)$, there exists a $(T_0; \leqslant)$ -generic model.

THEOREM

For any $(K_0; \leqslant)$ -generic model \mathcal{M} , there exists a quantifier-free class $(T_0; \leqslant')$ such that \mathcal{M} is $(T_0; \leqslant')$ -generic.

• • = • • = •

A generic class $(T_0; \leq)$ is *self-sufficient* if the following axiom holds:

• if $\Phi, \Psi, X \in T_0$, $\Phi \leqslant \Psi$, and $X \subseteq \Psi$, then $\Phi \cap X \leqslant X$.

• • = • • = •

æ

Below we denote by $(\mathbf{T}_0; \leq)$ a self-sufficient generic class, by $\overline{\mathcal{M}}$ a $(\mathbf{T}_0; \leq)$ -generic model, by \mathcal{T} a theory $\operatorname{Th}(\overline{\mathcal{M}})$, and by K a subclass of $\overline{\mathbf{T}}_0$ consisting of all models of the theory \mathcal{T} . A self-sufficient class $(\mathbf{T}_0; \leq)$ has the *t*-covering property if

• each type $\Phi(X)$ of theory T is deduced from some type $[\Psi_{\Phi}(B)]^B_{X\cup Y}$, where $\Psi_{\Phi}(B) \in \mathbf{T}_0$.

Let K be a class having finite closures, \mathcal{M} be a model in K, and S be a set in \mathcal{M} . The least (by inclusion) closed set in \mathcal{M} , containing S, is called an *intrinsic closure* of S in \mathcal{M} and is denoted by $\operatorname{icl}_{\mathcal{M}}(S)$, or by \overline{S} , if it is clear from the context which of the models \mathcal{M} is in point. If the set \overline{S} is finite then it is referred to as a *self-sufficient closure* of the set S. A type in the class T_0 , corresponding to the self-sufficient closure \overline{A} of a set A, is denoted by $\overline{\Phi}(\overline{A})$. If $\Phi(A) \in T_0$ and $\mathcal{M} \models \Phi(A)$, then the type $\overline{\Phi}(\overline{A})$ is called a *self-sufficient closure* of the type $\Phi(A)$.

(日) (日) (日)

THEOREM

If the class K has finite closures then for any model $\mathcal{M} \in K$ and any finite set $A \subseteq M$ there exists a self-sufficient closure \overline{A} of A. Moreover, $\overline{A} \subseteq \operatorname{acl}_{\mathcal{M}}(A)$.

THEOREM

If the class K has finite closures then for any model $\mathcal{M} \in K$ and any finite set $A \subseteq M$ there exists a self-sufficient closure \overline{A} of A. Moreover, $\overline{A} \subseteq \operatorname{acl}_{\mathcal{M}}(A)$.

COROLLARY.

If the class K has finite closures then the generic model $\overline{\mathcal{M}}$ is homogeneous.

A generic class $(T_0; \leq)$ is *hereditary* if T_0 consists of types $\Phi(A)$ containing all possible formulas describing a number of copies of a system of elements of a set B over a system of elements of a set A, and interrelations of elements of copies for each set $B \supseteq A$, where a respective type $\Psi(B)$ belongs to T_0 and satisfies $\Phi(A) \leq \Psi(B)$.

THEOREM

Every at most countable, homogeneous (saturated) algebraic system \mathcal{M} is a $(T_0; \leqslant)$ -generic model for some hereditary generic class $(T_0; \leqslant)$ (with the t-covering property).

THEOREM

Every at most countable, homogeneous (saturated) algebraic system \mathcal{M} is a $(T_0; \leqslant)$ -generic model for some hereditary generic class $(T_0; \leqslant)$ (with the t-covering property).

COROLLARY.

Every complete countable theory is generic.

Let $(\mathsf{T}_0;\leqslant)$ be a self-sufficient class satisfying the following conditions:

for any type Φ(A) ∈ T₀, the type Φ(A) yields a formula χ_Φ(A) describing the self-sufficient condition for the closure Φ(A); moreover, χ_Φ(A) also contains a formula which is deducible from Φ(A) and describes an upper bound for the cardinality of the set A;

The uniform *t*-amalgamation property and saturated generic models

• for any self-sufficient types $\overline{\Phi}(\overline{A})$ and $\overline{\Psi}(\overline{B})$, where $\overline{\Phi}(\overline{A}) \leq \overline{\Psi}(\overline{B})$, and for any formula $\psi(X, Y)$ in $\overline{\Psi}(X \cup Y)$ (here, X and Y are disjoint sets of variables, bijective with sets \overline{A} and $\overline{B} \setminus \overline{A}$ respectively), there exists a formula $\varphi(X)$ which is deducible from $\overline{\Phi}(X)$ and is such that the following formula holds true in $\overline{\mathcal{M}}$:

$$\forall X ((\chi_{\overline{\Phi}}(X) \land \varphi(X)) \to \exists Y (\chi_{\overline{\Psi}}(X,Y) \land \psi(X,Y))).$$

The uniform *t*-amalgamation property and saturated generic models

• for any self-sufficient types $\overline{\Phi}(\overline{A})$ and $\overline{\Psi}(\overline{B})$, where $\overline{\Phi}(\overline{A}) \leq \overline{\Psi}(\overline{B})$, and for any formula $\psi(X, Y)$ in $\overline{\Psi}(X \cup Y)$ (here, X and Y are disjoint sets of variables, bijective with sets \overline{A} and $\overline{B} \setminus \overline{A}$ respectively), there exists a formula $\varphi(X)$ which is deducible from $\overline{\Phi}(X)$ and is such that the following formula holds true in $\overline{\mathcal{M}}$:

$$orall X\left((\chi_{\overline{\Phi}}(X) \wedge \varphi(X))
ightarrow \exists Y\left(\chi_{\overline{\Psi}}(X,Y) \wedge \psi(X,Y)
ight)
ight).$$

If the above conditions are satisfied then we say that the class $(T_0; \leq)$ has the *uniform t-amalgamation property*.

The uniform *t*-amalgamation property and saturated generic models

THEOREM

If $(\mathbf{T}_0; \leqslant)$ is a self-sufficient class having the uniform t-amalgamation property and the class K has finite closures, then the $(\mathbf{T}_0; \leqslant)$ -generic model $\overline{\mathcal{M}}$ is ω -saturated. Moreover, any finite set $A \subseteq \overline{\mathcal{M}}$ is extendable to its self-sufficient closure $\overline{A} \subseteq \overline{\mathcal{M}}$, the type $\operatorname{tp}(\overline{A})$ contains the type $\overline{\Phi}(Y)$ for a self-sufficient type $\overline{\Phi}(\overline{A})$, and $\overline{\Phi}(Y) \vdash \operatorname{tp}(\overline{A})$. Let $(T_0; \leq_0)$, $(T_1; \leq_1)$, and $(T_2; \leq_2)$ be generic classes of languages L_0 , L_1 , and L_2 respectively, $L_0 = L_1 \cap L_2$, $\leq_0 = \leq_1 \cap \leq_2$. A generic class $(T_3; \leq_3)$ of language $L_1 \cup L_2$, such that $(T_3; \leq_3) \upharpoonright L_i = (T_i; \leq_i)$, i = 1, 2, is said to be a *fusion* of classes $(T_1; \leq_1)$ and $(T_2; \leq_2)$ over $(T_0; \leq_0)$. In this case, a $(T_3; \leq_3)$ -generic model is a *fusion* of $(T_1; \leq_1)$ - and $(T_2; \leq_2)$ -generic models.

(日) (日) (日) (日) (日)

Hrushovski style fusions of generic classes are defined by non-negative linear prerank functions δ_i for classes ($T_i \leq i$), i = 0, 1, 2, with non-negative linear prerank functions

$$\delta(A) = \delta_1(A) + \delta_2(A) - \delta_0(A),$$

of fusions, where $\delta_i(A) = |A| - \alpha_i \cdot |R_i(A)|$, $\alpha_i \in \mathbb{R}^+$, $R_i(A)$ is the number of tuples, being connected by predicates on A, i = 0, 1, 2.

Theories with finitely many countable models

Let T be a complete first order theory, $I(T, \lambda)$ be the number of pairwise nonisomorphic models of T and of cardinality λ .

Let T be a complete first order theory, $I(T, \lambda)$ be the number of pairwise nonisomorphic models of T and of cardinality λ .

Remind the characterization for $I(T, \omega) = 1$ (T is a countably categorical theory).

THEOREM (C. Ryll-Nardzewski)

A theory T is countably categorical iff for any $n \in \omega$ the set of types of T and of n fixed variables is finite $(|S^n(T)| < \omega)$.

Let T be a complete first order theory, $I(T, \lambda)$ be the number of pairwise nonisomorphic models of T and of cardinality λ .

Remind the characterization for $I(T, \omega) = 1$ (T is a countably categorical theory).

THEOREM (C. Ryll-Nardzewski)

A theory T is countably categorical iff for any $n \in \omega$ the set of types of T and of n fixed variables is finite $(|S^n(T)| < \omega)$.

Ryll-Nardzewski function: a function $f \in \omega^{\omega}$ such that $f(n) = |S^n(T)|$.

Let T be a complete first order theory, $I(T, \lambda)$ be the number of pairwise nonisomorphic models of T and of cardinality λ .

Remind the characterization for $I(T, \omega) = 1$ (T is a countably categorical theory).

THEOREM (C. Ryll-Nardzewski)

A theory T is countably categorical iff for any $n \in \omega$ the set of types of T and of n fixed variables is finite $(|S^n(T)| < \omega)$.

Ryll-Nardzewski function: a function $f \in \omega^{\omega}$ such that $f(n) = |S^n(T)|$.

If $1 < I(T, \omega) < \omega$ then the theory T is called *Ehrenfeucht*.

(日) (日) (日)

PROBLEM

ON CHARACTERIZATION OF EHRENFEUCHT THEORIES.

S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

æ

PROBLEM

ON CHARACTERIZATION OF EHRENFEUCHT THEORIES.

LACHLAN PROBLEM

ON EXISTENCE OF STABLE EHRENFEUCHT THEORIES.

S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS

• • = • • = •

크

PROBLEM

ON CHARACTERIZATION OF EHRENFEUCHT THEORIES.

LACHLAN PROBLEM

ON EXISTENCE OF STABLE EHRENFEUCHT THEORIES.

A theory is called *stable* if it doesn't have formulas $\varphi(\bar{x}, \bar{y})$ and tuples $\bar{a}_n, \bar{b}_n, n \in \omega$, such that

$$\models \varphi(\bar{a}_i, \bar{b}_j) \iff i \leq j.$$

- A.Ehrenfeucht (Poland), 1961 (examples);
- R.Vaught (USA), 1961 ($I(T, \omega) \neq 2$);
- M.Morley (USA), 1965, J.T.Baldwin (USA), A.H.Lachlan (Canada), 1971 (I(T, ω) = 1 or ≥ ω for uncountably categorical theories);
- E.A.Palyutin (USSR), 1971 (countably categorical universals);
- A.H.Lachlan (Canada), 1973 (I(T, ω) = 1 or ≥ ω for superstable theories);
- M.G.Peretyat'kin (USSR), 1973 (decidable Ehrenfeucht theories, new examples), 1980 (constant expansions and Ehrenfeuchtness);
- M.Benda (Czechoslovakia), 1974 (Ehrenfeuchtness implies existence of powerful types);
- D.Lascar (France), 1976 (I(T, ω) = 1 or ≥ ω for superstable theories), 1982 (finite Rudin—Keisler preorders for Ehrenfeucht theories);

- R.Woodrow (Canada), 1976 (sufficient conditions for theories to be like Ehrenfeucht example with three countable models), 1978, (constant expansions and Ehrenfeuchtness);
- S.Shelah (Israel), 1978 (I(T, ω) = 1 or ≥ ω for superstable theories);
- A.Pillay (Great Britain, USA), 1978 (I(T, ω) ≥ 4 for theories with infinite constantly defined sets), 1980 (dense partial order for Ehrenfeucht theories with small number of links), 1983 (I(T, ω) = 1 or ≥ ω for normal theories), 1989 (I(T, ω) = 1 or ≥ ω for 1-based theories),
- T.G.Mustafin (USSR), 1981 ($I(T, \omega) = 1$ or $\geq \omega$ for theories with superstable types);
- J.Saffe (Germany), 1981 (I(T, ω) = 1 or ≥ ω for superstable theories);
- T.Millar (USA), 1981 (constant expansions and Ehrenfeuchtness); 1985 (decidable Ehrenfeucht theories);

- B.Omarov (USSR), 1983 (constant expansions and Ehrenfeuchtness);
- C.J.Ash, T. Millar (USA), 1983 (constructive models of Ehrenfeucht theories);
- A.Tsuboi (Japan), 1985 (any Ehrenfeucht theory being a union of ω-categorical theories is unstable), 1986 (I(T, ω) = 1 or ≥ ω for unions of pseudo-superstable theories);
- S.Thomas (USA), 1986 (constant expansions and Ehrenfeuchtness);
- E.Hrushovski (Israel), 1989 ($I(T, \omega) = 1$ or $\geq \omega$ for finitely based theories);
- A.A.Vikent'ev (USSR), 1989 (inheritance of non-Ehrenfeuchtness from non-Ehrenfeucht formula restrictions);

- R.Reed (USA), 1991 (decidable Ehrenfeucht theories);
- B.Herwig (Germany), J.Loveys (USA), A.Pillay (USA),
 P.Tanović (Yugoslavia), F.Wagner (Germany), 1992
 (*I*(*T*, ω) = 1 or ≥ ω for stable theories without dense forking chains);
- S.S.Goncharov (Russia), M.Pourmahdian (Iran), 1995 (finiteness of rank for any Ehrenfeucht theory);
- B.Herwig (Germany), 1995 (small stable theories with infinite weight);
- B.Khoussainov, A.Nies (New Zealand), R.A.Shore (USA), 1997 (recursive models of Ehrenfeucht theories);
- K.Ikeda (Japan), A.Pillay (USA), A.Tsuboi (Japan), 1998 (dense linear orders in almost ω-categorical theories with three countable models);

- B.Kim (USA), 1999 ($I(T, \omega) = 1$ or $\geq \omega$ for supersimple theories);
- P.Tanović (Yugoslavia), 2001 ($I(T, \omega) \ge \omega$ for stable theories with an infinite set of pairwise different constants);
- S.Lempp, T.Slaman, 2004 (Π¹₁-completeness of Ehrenfeucht property);
- W.Calvert, V.S.Harizanov, J.F.Knight, S.Miller (USA), 2005 (the complexity of index sets of classical Ehrenfeucht theories);
- P.Tanović (Serbia), 2006 (a countable, complete, first-order theory with infinite dcl(Ø) and precisely three non-isomorphic countable models interprets a variant of Ehrenfeucht's or Peretyat'kin's example);

- P.Tanović (Serbia), 2009 (a presence of types directed by constants guaranties the maximal number of non-isomorphic countable models of theory; proof of the PILLAY CONJECTURE: if *T* is the elementary diagram of a countable model then *I*(*T*, ω) ≥ ω);
- A.N.Gavryushkin (Russia), 2006–2009 (computable models of Ehrenfeucht theories).

$$\begin{split} \mathcal{M} &= \langle \mathbb{Q}, <, c_n \rangle_{n \in \omega}, \ c_n < c_{n+1}, \\ &\lim_{n \to \infty} c_n = \infty \text{ (the prime model);} \\ &\lim_{n \to \infty} c_n \in \mathbb{Q} \text{ (the prime model} \\ &\text{over a realization of nonisolated 1-type);} \\ &\lim_{n \to \infty} c_n \in \mathbf{lr} \text{ (the saturated model).} \end{split}$$

999

A type $p(\bar{x}) \in S(T)$ is called *powerful* type of theory T if for any models \mathcal{M} of T realizing p the model \mathcal{M} realizes any type $q \in S(T) : \mathcal{M} \models S(T)$. If $I(T, \omega) < \omega$ then T has a powerful type. A type $p(\bar{x}) \in S(T)$ is called *powerful* type of theory T if for any models \mathcal{M} of T realizing p the model \mathcal{M} realizes any type $q \in S(T) : \mathcal{M} \models S(T)$. If $I(T, \omega) < \omega$ then T has a powerful type.

An existence of powerful type implies the *smallness* of theory T i.e. the set S(T) is countable. It also implies that there are prime models $\mathcal{M}_{\bar{a}}$ over tuples \bar{a} for any type $p \in S(T)$ and any its realization \bar{a} . Since all prime models over realizations of p are isomorphic, these models are denoted by \mathcal{M}_p .

(日) (日) (日)

Basic characteristics for theories with finitely many countable models

For any types $p, q \in S(T)$ we write $p \leq_{RK} q$ and say that p is not more than q under the Rudin — Keisler preorder if \mathcal{M}_q has a realization of type p. At the same time we write $\mathcal{M}_p \leq_{RK} \mathcal{M}_q$ if $p \leq_{RK} q$. By $\mathrm{RK}(T)$ we denote the set of all isomorphism types of models \mathcal{M}_p with the RK-relation induced by the relation \leq_{RK} for models \mathcal{M}_p . We say that models \mathcal{M}_p and \mathcal{M}_q are RK-equivalent if

$$\mathcal{M}_p \leq_{RK} \mathcal{M}_q$$
 and $\mathcal{M}_q \leq_{RK} \mathcal{M}_p$.

Isomorphism types M_1 and M_2 from RK(T) are *RK*-equivalent:

$$\mathbf{M}_1 \sim_{RK} \mathbf{M}_2,$$

if their representatives are RK-equivalent.

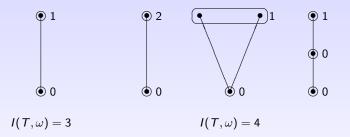
Basic characteristics for theories with finitely many countable models

A model \mathcal{M} is (strongly) limit over a type p if \mathcal{M} is a union of an elementary chain $(\mathcal{M}_n)_{n\in\omega}$ such that $\mathcal{M}_n \simeq \mathcal{M}_p$, $n \in \omega$, and $\mathcal{M} \not\simeq \mathcal{M}_p$. Let $\operatorname{RK}(T)$ be a finite system. For any class $\widetilde{\mathbf{M}} \in \operatorname{RK}(T)/\sim_{RK}$ consisting of isomorphism types of RK-equivalent models $\mathcal{M}_{p_1}, \ldots, \mathcal{M}_{p_n}$ we denote by $\operatorname{IL}(\widetilde{\mathbf{M}})$ the number of pairwise non-isomorphic limit models each of which is limit over some type p_i .

Syntactic characterization of theories with finitely many countable models

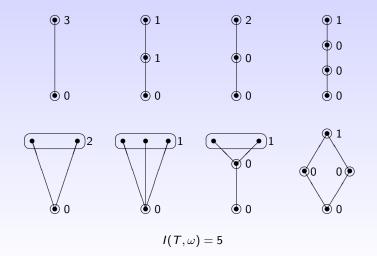
THEOREM

For any countable complete theory T the following conditions are equivalent: (1) $I(T,\omega) < \omega$; (2) T is small, $|\text{RK}(T)| < \omega$ and $\text{IL}(\tilde{M}) < \omega$ for any $\tilde{M} \in \text{RK}(T)/\sim_{RK}$. If the condition (1) (or (2)) is true, then T satisfies the following conditions: (a) RK(T) has the least element M_0 (the isomorphism type of a prime model) and $IL(M_0) = 0$; (b) RK(T) has the greatest \sim_{RK} -class M_1 (the class of isomorphism types of all prime models over realizations of powerful types), and |RK(T)| > 1implies $IL(M_1) > 1$; (c) if $|\mathbf{M}| > 1$ then $IL(\mathbf{M}) > 1$. Moreover the following decomposition formula is true: $|\mathrm{RK}(T)/\sim_{RK}|-1$ $I(T, \omega) = |\operatorname{RK}(T)| + \sum_{i=1}^{N}$ $IL(\widetilde{M}_i),$ where $\widetilde{M_0}, \ldots, M_{|\mathrm{RK}(\mathcal{T})/\sim_{\boldsymbol{PK}}|-1}$ are all elements of the partially ordered set $\operatorname{RK}(T)/\sim_{RK}$.



S.V. Sudoplatov SYNTACTIC GENERIC CONSTRUCTIONS

590



< 🗗

→ < 문 > < 문 >

590

₹.

Realization of basic characteristics for theories with finitely many countable models

THEOREM

Let $\langle X; \leq \rangle$ be a finite preordered set with the least element x_0 and the greatest class $\widetilde{x_1}$ in the ordered factor-set $\langle X; \leq \rangle / \sim$ by the relation \sim (where $x \sim y \Leftrightarrow x \leq y$ and $y \leq x$), $f: X / \sim \rightarrow \omega$ be a function (a distribution function) satisfying the following conditions: (a) $f(\widetilde{x_0}) = 0$; (b) |X| > 1 implies $f(\widetilde{x_1}) \geq 1$. (c) $|\widetilde{y}| > 1$ implies $f(\widetilde{y}) \geq 1$. Then there exists a stable (unstable) theory T and an isomorphism $g: \langle X; \leq \rangle \xrightarrow{\sim} \operatorname{RK}(T)$ such that $\operatorname{IL}(g(\widetilde{y})) = f(\widetilde{y})$ for any $\widetilde{y} \in X / \sim$.

(日) (日) (日)

THEOREM

For any $n \in \omega \setminus \{0, 2\}$ there exists a stable theory T_n with $I(T_n, \omega) = n$.

▲□→ ▲ □→ ▲ □→

æ

Language

unary disjoint predicates Col_m, m ∈ ω, and disjoint P₁,..., P_n,
 ∀x V _{i=1}ⁿ P_i(x), with given number n of prime models over realizations of non-principal 1-types p₁(x),..., p_n(x);

æ

Language

- unary disjoint predicates Col_m, m ∈ ω, and disjoint P₁,..., P_n,
 ∀x ⁿ V_{i=1} P_i(x), with given number n of prime models over realizations of non-principal 1-types p₁(x),..., p_n(x);
- the countable set of pairwise disjoint antisymmetric irreflexive binary relations Q_n , $n \in \omega$ defining acyclic digraphs with unbounded lengths of shortest Q^* -routes $(Q^* \rightleftharpoons \bigcup_{n \in \omega} Q_n)$ on the structures of $p_i(x)$ and on their neighbourhoods;

Language

- unary disjoint predicates Col_m , $m \in \omega$, and disjoint P_1, \ldots, P_n , $\vdash \forall x \bigvee'' P_i(x)$, with given number *n* of prime models over realizations of non-principal 1-types $p_1(x), \ldots, p_n(x)$;
- the countable set of pairwise disjoint antisymmetric irreflexive binary relations Q_n , $n \in \omega$ defining acyclic digraphs with unbounded lengths of shortest Q^* -routes ($Q^*
 ightarrow igcup Q_n$) on

the structures of $p_i(x)$ and on their neighbourhoods;

• the countable set of pairwise disjoint symmetric irreflexive binary relations $P_{i,k,l}$, $i, k \in \omega$, l = 1, ..., n, allowing to connect elements *a* of infinite color $\left(\models \bigwedge_{m \in \omega} \neg \operatorname{Col}_m(a)\right)$ with elements of finite colors *m* by principal formulas over *a*;

 the countable set of pairwise disjoint symmetric irreflexive binary relations R_j, j ∈ ω, connecting only elements of the same color and the same P_i, guaranteing the coincidence of prime models over realizations of p_i(x) if these realizations are connected by R_j;

(日) (日) (日)

- the countable set of pairwise disjoint symmetric irreflexive binary relations R_j, j ∈ ω, connecting only elements of the same color and the same P_i, guaranteing the coincidence of prime models over realizations of p_i(x) if these realizations are connected by R_j;
- predicates R'_s , $s \in \omega$, guaranteing realization-equivalence of $\bigvee_{i=1}^{n} p_i$ with all nonprincipal types.

syntactic modifications of Hrushovski — Herwig generic construction;

(日本)(日本)(日本)

æ

- syntactic modifications of Hrushovski Herwig generic construction;
- syntactic modifications of Hrushovski fusion;

크

- syntactic modifications of Hrushovski Herwig generic construction;
- syntactic modifications of Hrushovski fusion;
- powerful directed graphs with almost inessential ordered colors;

- syntactic modifications of Hrushovski Herwig generic construction;
- syntactic modifications of Hrushovski fusion;
- powerful directed graphs with almost inessential ordered colors;
- expansions for realizations of non-principal types in prime models over 1-types;

- syntactic modifications of Hrushovski Herwig generic construction;
- syntactic modifications of Hrushovski fusion;
- powerful directed graphs with almost inessential ordered colors;
- expansions for realizations of non-principal types in prime models over 1-types;
- corealization amalgams.

The results and generalizations for the class of all small theories are presented in: [*Sudoplatov S.V.* The Lachlan Problem. — Novosibirsk, 2008. — 246 p.]

æ

The results and generalizations for the class of all small theories are presented in:

[*Sudoplatov S.V.* The Lachlan Problem. — Novosibirsk, 2008. — 246 p.]

The book is available in: http://www.math.nsc.ru/~sudoplatov/lachlan_03_09_2008.pdf (in Russian), http://www.math.nsc.ru/~sudoplatov/lachlan_eng_03_09_2008.pdf (in English).