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Introduction

All functions, manifolds, etc. are assumed
to be real smooth.

Geometric structures are 1nvestigated 1in
differential geometry.

Example: any tensor field on manifold X,
such as wvector field, differential form, me-
tric, etc., 1s a geometric structure.

Tensor field S of type (pP,q) on any manifold
can be presented by function

Sg: U (T)? ® (T*)“
choosing coordinate system F = (f) in the neigh-
borhood U of this manifold. If other coordi-

nate system G=(g") in U is chosen, S 1is
represented by map

S(x)g =a(S(x)p, 097 /0F) .



Self-consistency law:
S(x)y =a(S(x)g, O0h)/Of")
= a(S(x)g,0n’/0g") =
a(a(s(x)s,097/0f") ,0n7/0g") .

Y -valued geometric structure

We fix arbitrary manifold Y and smooth self-
consistent function, e.g. action
a: Y x GL(R)— Y.

Y-valued geometric structure 1s represented

by map S(x)r: U — Y in coordinate system F and
1s represented by map

S(x)s = a(S(x),09’/0f")
1n another coordinate system G 1n U, xeU.



Geometric structures of the first order:
transformation law a depends only on first de-

rivatives 0g’l/of*".
Geometric structures of order t: transforma-
tion law a depends on derivatives

0q’
(of )...(of ")"

of order up to 1.

Example: Any connection on manifold has
second order.



Formal definition:

Jets of order (Q at point 0 that keep orien-

tation and point 0 of mappings R" — R" form
Lie group G?(n )O with respect to super-
positions. Clearly, G' (n)°=GL", (R) .

Consider oriented manifold X,dimX=n. Jet

of order (q at point 0 of map J:¥Y—=X,7(0)=x
that keeps orientation 1s called (g-frame at

point xeX. The set of all (-frames of all
points x of manifold X form fibre Dbundle

Repq (X) —>X. It 1s a princlple fibre bundle with
group G¥(n)Y. Consider an action
a: GIm)’ x vy - v
on some manifold Y.



Definition: Bundle of geometric structures
P=P(Y)—> X of order g with typical fibre Y 1s
the direct product Repq(X)XY factorized under
equivalence relation(e,r)~(eqg,g 'r).

Geometric structure 1s section of bundle P.

Riemann metric 1s an 1mportant example of
geometric structure.
Scalar curvature R (x) of Riemann metric S is a
typlical example of differential 1nvariant.
Every metric s 1n local coordinate system

(f)= F in the neighborhood U is represented by
function SFNLAWR*)Z-with components

s,(f*) = s,(f(x)), xeU.



Then for any xeU
Rs(x)=F(si5(x), 0Osij(x) /Of",

825'13' (X) /5fk8fr)
where the value R:(x) and the form of function
FF' (found by Riemann) are independent of coor-
dinate system. Differential 1invariant of order
k 1s such function of geometric structure
components and their partial derivatives of
order up to k, whose value at each point 1is
independent of local coordinate system choo-
sen.

Differential i1nvariant of order k has natu-
ral domain of definition - the manifold J*=J°P
of k—-jets of sections of fibre bundle of geo-

metric structures P=P(Y)—>X.



Differential 1nvariants have another defini-
tion. The (pseudo)group Diff(X) of diffeomor-
phisms of X acts on JP in a naturally way.

Differential invariant of order k may be de-
fined as function on JP, which is locally con-
stant on each orbit of this action.

Definttion. The action of a group or a
pseudogroup on some manifold 1s said to be
regular at a point z of this manifold 1i1f the
dimension of orbits of this action 1s con-
stant 1n some neighborhood of z.

It 1s easy to show that regular points form
open dense subset 1in J“P for each k.



Theorem 1. Let P=P(D)—>X be a fibre bundle
of geometric structure with typical fiber D
and differential order g. Let dimD=m, dimX=n

and m>n. Then at any regular point aeJP there
are at least

t(k)= mCt, - n(CV - 1)

n+k+q
functionally 1ndependent differential 1nva-
riants of order k, defined at a.



Theorem 1 continues..
For k—ow we have

t(k) = (m- n)C¥,, - e(k)C!

n+ k
with e (k) —>0, where e (k) depends only on m,n,g
and k.Therefore, t(k)—>w as k—oo.

Note that exact values of t(k) for general
Riemann metrics and some other specific geome-
tric structures are computed 1n [Thomas 1934].

A bundle of geometric structures E—>X 1s
called special bundle 1f the dimension m of
1ts fiber 1s smaller than the dimension n of
1t's Dbase X; otherwise, E 1s called non-
special bundle.



Theorem 1 deals with non-special bundles.

Now we will consider special bundles. All
results listed below are wvalid for the case
n > 2. (One may deal with the cases n = 1 and
n = 2 in the similar way by changing some
formulations of the results.)

1. Each special manifold E at each regular
point x (1.e. 1n some neighborhood of x) 1s
locally 1isomorphic to one of the 19 types of
sample manifolds E;.

This local 1somorphism 1s natural, 1.e. com-
mutes with action of Diff(X) on E and E;.

2. For all sample manifolds, the action of

the group Diff (X) on E; 1s described.



3. If a local sections s of special bundle

1s sufficiently general at point beX, than s
may be reduced to canonical form 1n a neigh-
borhood of b. All this forms are listed.

4. For any special bundle E the finite com-
plete set T of functionally 1ndependent diffe-
rential i1nvariants 1s
written out explicitly.

Completeness of set T means that each diffe-
rential 1nvariant (of arbitrary differential
degree) at any sufficiently general point of E
may be represented as a superposition of 1nva-
riants, belonging to set T.



Now we will list types of sample manifolds.
Fach sample manifold E; 1s defined by an action
GI(n)’ x Y; > ¥4
on some manifold Y; (Y; 1s a typical fiber of
E;) . There are 17 types of sample manifolds
corresponding to g=1, 1.e. having first order.
For g=1 we have G%(n)°’= GL°,(R). All following
constructions are local. Let :x3"4>51 be a

coordinate system on X. Fi1x a polnt beX. We
name sufficiently general 1n b section shortly
by b-section.



Type 1. Corresponds to trivial action of
GL'. (R) on R"(m<n) and defines trivial bundle

E1=R"™X on X. A b-section s:X—E; is given by m
functions st, .., s™ such that Jacoby matrix
(Os/0x) (b) has rank m. If m<n, canonical form

of s (In correspondiling coordinate system
f',..,f7 on X) is s'=f'4A, .., s"=f"+A". If m=n,
then we also have another canonical form

st = fY4A' for i<n, s® = —-f4A°

(M* are constants).



Type 2. E,=(R"'xX)yx+A™ is a direct sum of
trivial bundle R™'xX and one-dimensional bun-
dle A" of positive n-forms on X. A b-section
s:X—>E, is given by m-1 functions s*,..,s™' such
that Jacoby matrix (0s/0x) (b) has rank m-1, and
any positive n-form m. Canonical form of s 1s

st=flpt, ., ™=yt o =dfl~. Adfn.

Type 6. E; is the positive projectivezation
P'TX (this means that we identify vectors e and

Ae for positive A) of the tangent space of X.
Any section s has as canonilical representative

vector field 0/0f' on X (rectifyability of vec-
tor field).



Type 3. E;=(RxX)y+P'TX 1is a direct sum of
one-dimensional trivial bundle and P'TX.

A b-section s=(¥, e) 1s glven by condition
oV /0e (b)#0. Canonical forms are
Y= A'+ft, e= 0/0f".
For further purposes for any l-form ® on X
and any natural k £ n denote by o' the k-form

do”™..Ndo do”.. do" ®

J o J/

M 1f k=2a and M 1f k=2a+1l.

a times a times




Type 7(n=2a). E,; is the positive projective-
zation P'QX of the cotangent space of X. Any
b-section s 1s represented by 1-form ® on X
with the condition o™ (b)=0. Using freedom 1n

choosing ® and Darboux theorem, 1n convenilent
coorinate system h" on X we have

® = 2:.°h**'dh**, h'(b)#0, h'(b)=0 for i>1.

In coordlinate system:
f* =h'-h'(b), £ '=h""""/h' for 2<i<a, h*" = £~

for 1<i<a section s has to canonilical repre-
sentative

o = df’+X,_,2f%17tqret,



Type 8(n=2a+l). Eg is the positive projecti-
vezation P'QQX of the cotangent space of X. Any
b-section s 1s represented by 1-form ® on X

with the condition ®'"™ (b)#0. Canonical forms
are.

O)Zzlzlale_ldleidfza+l .

Type 4(n=2a). E; =(RxX)y+ P'QOX is a direct
sum of one-dimensional trivial Dbundle and
P'QX. A b-section s=(¥, o) is given by condi-
tion d¥YA0 " P#0. Canonical forms are

W=\, o= df? 43,07 dE.



Type 5(nh=2a+1). E; =(RxX)y+ P'QX is a direct
sum of one-dimensional trivial bundle and
P'OX. A b-section s=(¥, o) is given by condi-
tions

d¥YAm ™ (b)#0, (do“* PV AdY) (b) # 0.
Canonical forms are

P=\"+£7,
W= Zl 1 2]. ldf21+df2a+l

Type 9. E=P TX+A"™. A b-section 1is a pair
(e, m) such that e(b)#0. Canonical form 1s
e=0/0f", m=df'~.~df".

Type 10(n=2a). E,c = P'OX +A"™. A b-section 1is
a palr (OLTU such that (Dmﬂj(b)iO. Canonical
form is =df*+X;_,°f**'df*t, m= df' .~df".



Type 11(n=2a+l). E;; = P'QX +A"™. A b-section
1s a pair (w,m) such that ® " (b)#0. Canonical
forms are ®=X;_ *f°*'df** +df**"t, p=df*r..~dfn.

Type 12. In this case Y, (typical fiber of

F;,) 1s equal to R" - 0, and geGLOn(R) acts on

veR® by formula gv=det (g) ‘“?’"gv. Here deR is a

parameter, and we call E;, gquasitangent bundle

and denote E{,=TyhX (E;, = TX when d=1). For
each coordinate system 1n X we 1dentify (non-
canonically) sections of TyX with vector

fields on X. When d # 1-n then a b-section e
of T gyX 1s defined by condition e (b)#0 and has
canonical form e= 0/0f'.



Case d = 1-n. There 1s a coordinate system ht
in X such that e'>0, e'=0 for i>1. A b-section

is defined by condition [de'/dh'] (b)#0 and has
canonical forms e'= 1+f', e'=0 for i>1.

Types 13 and 14. In this case Y1314 (typical
fiber of Ei314) 1is equal to R* - 0, and

geGL’, (R) acts on veR*" by formula
gv=det (g) ‘""" (g7 Tv.

Here deR is a parameter, and we call Ej3 14 qua-
sicotangent bundle and denote

E13,14=Q(d)X (E13,14 = QX when d:]_) .
Case d=1 1s well known so we assume d#l. For
each coordinate system 1n X we 1dentify (non-
canonically) sections of T y)X with 1-forms on
X.



Type 13(h=2a). A b-section ® 1s defined by
condition o™ (b)#20 and has canonical form
(1+f1H) df? + X._2f%tgret,

Type 14(n=2a+1). When (d-1) (a+l)#n then a
b-section ® is defined by condition o™ (b)=#0
and has canonical forms o= X:_°f?*1df?t + dgr#'t,
In the case (d-1) (atl)=n the definition of

b-section 1s a little too long and we omit 1t;
canonical forms are

o = (£74A%) (i £ N dE T RdEY) , £ (b) =0.

Type 18(n=4). Ei;3 is a grassman manifold Eg
of oriented 2-planes of R®.



The definition of b-ection 1s a 1little too
long and we omit 1t again. Any b-section s of
Eqr has canonical form: s 1s generated by vec-

tor fields e’ = 9/0f, d'= f£'0/0f'+£°£'0/0f°+0/0f>.

Type 19(n=3). E;y is a manifold consisting of
oriented flags s=(1l,p) in R’, namely each flag
consists of oriented line 1, contained 1n
orlented Z-plane p. We denote Ei9 by Ef. To de-
fine Db-section we note that any section
s(x)=(1(x),p(x)) of Ef defines (nonuniquely)
l-form w(x) on X (p(x) annihilates ®(x)), and

condition [w~dw] (b)#0 defines b-section. The
canonical forms for b-section are:

1(x)={0/0f"}, p(x)={0/0f', 0/0f* + f'0/0f°},

f*(b)=0.



Now we will list 3 types of sample manifolds
for g=2.

The group G°(n)” has a natural projection on
Aff, (Aff, 1s the affine group of R*") and
(f(n)oacts on Yis5 16,17 Vvia this projection.

Yie = R* (n=2a), Y7 = R* (n=2a+1l), and Aff,
acts on R*' in a standard way. Y;5 is a mani-
fold of all hyperplanes (not necessarily con-
taining null) in R*". We identify a section s
of E; (non—-canonically) for 1=16,17 wilith

a l-form weQ)X, and for i=15 with a family of
hyperplanes in QX.

0

Type 15. Any local section s of E;s5 is
a b-section. The canonical form of s 1s given

by equation 6/0f' =0 (6/6f* and f* form a coor-
dinate system in QX).



Type 16. A b-section of E;s is given by con-
dition o' (b)#20. Canonical forms are
©w = + fidf? + T,_,% £2iigret,

Type 17. A b-section of Ej; is given by con-
dition ™ (b)#0. Canonical form is
® = T fFNAEY 4+ dETT.

There are no special bundles for g=23.



List once more all types of sample manili-
folds.

g=1.
E,=R™xX, E,=(R™'xX)«+A"",
Es= (RxX) x+P'TX, E4 5= (RxX)x+P QX,
Ec=P'TX, E;=P'QX, E¢=P TXgx+A"",
Ei9,11=P"QXx+A", E=T X, E13,1.=Q@X,
Ei1g=Egr, Ei19=Ee .

q=2- Eis, Ei¢, E17.



Further discussion 1s valid for an arbitrary
Lie pseudogroup PG of order g acting on arbi-
trary manifold P of dimension m + n and not
only for bundles of geometric structures. Let
us consider the spaces JP and J°P consisting
respectively of 7jJets of order k and infinite
jets of submanifolds of dimension n in the ma-
nifold P. For k=2s, there is the natural pro-
jection m(s,k): J°P —>J*P. The space J P has an
ordinary weak topology of projecttive 1limit.

The action of the pseudo-group PG may be natu-
rally extended to all manifolds JP and to the

space J P.



Then, we have:

(1) P has an open everywhere dense invariant
set Ry consisting of regular points.

(2) For each natural number k, there 1is an
open everywhere dense invariant set Ry in JP
consisting of regular points.

(3) There is some natural number K = K(n,m,q),
depending only of n, m and g such that for
cach k2K we have m '(k,K)[Rxk]CR,, 1i.e. each
preimage of each point from Rx 1s reqgular.
Let us define R” = m ' (k,K)[Rk]. This set is
open everywhere dense invariant domain in J P.



(4) If the number of functionally independent

differential invariants at point zeR™ 1is not
finite, there 1s a finite set (depending of 2z)
of differential invariants F;,..F; and n i1nvariant
differentiations D;, ..,D,, such that acting re-
peatedly by D; on Fy one gets complete set of
differential invariants for each point close to
point z (Tresse's Theorem). In a sense, for each

point ze R functions F; and invariant differen-
tiations D; may be explicitly found (using dif-
ferentiations, algebraic operations and solution
of systems of algebraic equations via 1implicit
function theorem). The number P,(k) of function-
ally 1ndependent differential 1invariants at
polint z having differential degree k 1s a poly-
nomial 1in k (for sufficiently large k). We call
this polynomial the Hilbert's polynomial of the
polint z.



(5) The domain R” is a disjoint union of fi-
nite number of open sets (atoms), every point
of each atom having the same Hilbert polynomi-
al.

In principle one can explicitly derive con-
ditions defining each atom from Lie pseudo-
group PG equations. In princiliple for each atom
the corresponding Hilbert polynomial can be
computed explicitly. Hilbert polynomials for
all atoms are contained 1n the universal 1list
of Hilbert polynomials. This 1list 1s finite
and depends only on m, n and g, and does not
depend on given pseudogroup PG.

In principle one can explicitly find this
list. (Explicitly means that one uses only fi-
nite number of differentiations and algebraic
operations.)



All results are true both 1n smooth and real
analytic cases.

In real analytic case domain R 1is a single
atom and it's complement in J 1is contained in
a hypersurface.

Many authors considered differential 1nva-
riants and Tresse's theorem. We mention both
classical works of Lie,Cartan and Tresse, and
modern works of Thomas T.Y., Ovsiannikov, Kum-
pera, Olver, Bryant, Ibragimov, Kruglikov &
Lychagin, Yumaguzhin, Morozov among others.



As polnted out i1n Arnold’s paper “Mathemati-
cal problems 1n classical physics” 1n Trends
and Perspectives 1n Applied Mathematics (Appl.
Math. Series, vol. 100), Springer, 1994, pp.
1-20], and 1n book“Arnold's Problems”, Moscow:
FAZIS, 2000; problem 1994-24, this theorem was
formulated by Tresse, but 1t’s proof has not
vet been absorbed by modern mathematics.

A. Kumpera 1n the paper “Invariants differ-
rentlels d’ un pseudo—-groupe de Lie”,
J. differential geometry, v.10(1975),
p.p. 289-416 has found sufficient conditions
for wvalidity of Tresse’s theorem. Author has
checked the wvalidity of this conditions for
the points of the domain R.



This work uses some 1deas, which was commu-
nicated to author by A. Khovanskii about 20
vears ago. Now they are published in the book
A. FKhovanskii, S. Chulkov, "“The geometry of

n
semigroup Zso”, M., 2006.



The results reported are published 1n papers:

1. R. Sarkisyan, On differential invariants of
geometric structures, Izvestiya: Mathematics
70:2(2000), 307-362.

2. R. Sarkisyan, On differential invariants of
geometric structures II, submitted for publi-
cation.

3. R. Sarkisyan and I. Shandra, Regularity and
Tresse’s theorem for geometric structures, Iz-
vestiya: Mathematics 72:2(2008), 345-382.

4. R. Sarkisyan, Rationality of Poincare se-
ries 1n local problems of Analisys according
to Arnold, Izvestiya: Mathematics 74:2(2010).



	This work was partially supported 
	by RFFI grants
	 №№ 05 – 01 – 01015

