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Introduction 
 

All functions, manifolds, etc. are assumed 
to be real smooth. 

Geometric structures are investigated in 
differential geometry.  

Example: any tensor field on manifold X, 
such as vector field, differential form, me-
tric, etc., is a geometric structure. 
  Tensor field S of type (p,q) on any manifold 
can be presented by function  

SR: U→(T)p ⊗ (T*)q 
=choosing coordinate system ) in the neigh-

borhood U of this manifold. If other coordi-
nate system jG (g )=  in U is  chosen, S is 
represented by map  

iF (f

S(x)G =a(S(x)F,∂gj/∂fi). 



 
Self-consistency law: 

S(x)H =a(S(x)F,∂hj/∂fi) 
= a(S(x)G,∂hj/∂gi)= 

a(a(S(x)F,∂gj/∂fi),∂hj/∂gi). 
 
 

Y-valued geometric structure 
 
We fix arbitrary manifold  and smooth self-
consistent function, e.g. action   

Y

a: Y × GL(R)→ Y. 
Y-valued geometric structure is represented 

by map S(x)F: U → Y in coordinate system F and 
is represented by map  

S(x)G = a(S(x),∂gj/∂fi) 
in another coordinate system G in U, x∈U. 



Geometric structures of the first order: 
transformation law a  depends only on first de-
rivatives ∂gj/∂fi. 

Geometric structures of order : transforma-
tion law a  depends on derivatives 
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of order up to . t
 

Example: Any connection on manifold has 
second order. 
 
 

 
 
 



Formal definition: 
 

Jets of order  at point 0 that keep orien-
tation and point 0 of mappings Rn → Rn form 
Lie group Gq(n)0 with respect to super-
positions. Clearly, G1(n)0=GL0n(R).  

q

 
 
Consider oriented manifold . Jet 

of order q at point 0 of map j:Y→X,j(0)=x 
that keeps orientation is called q-frame at 
point x∈X. The set of all q-frames of all 
points x of manifold X form fibre bundle 
Repq(X)→X. It is a principle fibre bundle with 
group Gq(n)0. Consider an action   

X, dim X n=

a: Gq(n)0 × Y → Y 
on some manifold Y. 



 
Definition: Bundle of geometric structures 

P=P(Y)→ X of order q with typical fibre Y is 
the direct product Repq(X)×Y factorized under 
equivalence relation(e,r)∼(eg,g-1r). 

 
Geometric structure is section of bundle P. 

 
Riemann metric is an important example of 

geometric structure.  
Scalar curvature Rs(x) of Riemann metric  is a 
typical example of differential invariant.  

s
Every metric s in local coordinate system 

 in the neighborhood U is represented by 
function SF:U→(R*)2 with components  

k k

k(f ) F=

ij ijs (f ) s (f (x)= ), x∈U. 



Then for any x∈U  
Rs(x)=F(sij(x), ∂sij(x)/∂fk, 

 ∂2sij(x)/∂fk∂fr) 
where the value Rs(x) and the form of function 
F (found by Riemann) are independent of coor-
dinate system. Differential invariant of order 
k is such function of  geometric structure 
components and their partial derivatives of 
order up to k, whose value at each point is 
independent of local coordinate system choo-
sen.  

Differential invariant of order k has natu-
ral domain of definition – the manifold Jk=JkP 
of k-jets of sections of fibre bundle of geo-
metric structures P=P(Y)→X.  



Differential invariants have another defini-
tion. The (pseudo)group Diff(X) of diffeomor-
phisms of X acts on JkP in a naturally way. 

 
Differential invariant of order k may be de-

fined as function on JkP, which is locally con-
stant on each orbit of this action.  

 
Definition. The action of a group  or a 

pseudogroup on some manifold is said to be 
regular at a point z of this manifold if the 
dimension of orbits of this  action is con-
stant in some neighborhood of z. 

 
It is easy to show that regular points form 

open dense subset in JkP for each k. 
 

 



 
 
Theorem 1. Let P=P(D)→X be a fibre bundle 

of geometric structure with typical fiber D 
and differential order q. Let dimD=m, dimX=n 
and m>n. Then at any regular point a∈JkP there 
are at least 

k k q
n k n k qt(k) m C n(C 1)+

+ + += - -  

functionally independent differential inva-
riants of order k, defined at a. 
 
 
 
 
 
 
 



Theorem 1 continues… 
For k→∞ we have 

t(k) k k
n k n(m n)C (k)C+ += - - e k 

with e(k)→0, where e(k) depends only on m,n,q 
and k.Therefore, t(k)→∞ as k→∞.  
 

Note that exact values of  for general 
Riemann metrics and some other specific geome-
tric structures are computed in [Thomas 1934]. 

t(k)

 
A bundle of geometric structures E→X is 

called special bundle if the dimension m of 
its fiber is smaller than the dimension n of 
it's base X; otherwise, E is called non-
special bundle.  

  
 



Theorem 1 deals with non-special bundles. 
 Now we will consider special bundles. All 
results listed below are valid for the case 
n > 2. (One may deal with the cases n = 1 and 
n = 2  in the similar way by changing some 
formulations of the results.) 
 
  1. Each special manifold E at each regular 
point x (i.e. in some neighborhood of x) is 
locally isomorphic to one of the 19 types of 
sample manifolds Ei. 
 This local isomorphism is natural, i.e. com-
mutes with action of Diff(X) on E and Ei.  

2. For all  sample manifolds, the action of 
the group Diff(X) on Ei is described.  

 
 



3. If a local sections s of special bundle 
is sufficiently general at point b∈X, than s 
may be reduced to canonical form in a neigh-
borhood of b. All this forms are listed. 

4. For any special bundle E the finite com-
plete set T of functionally independent diffe-
rential invariants is 
written out explicitly. 

Completeness of set T means that each diffe-
rential invariant (of arbitrary differential 
degree) at any sufficiently general point of E 
may be represented as a superposition of inva-
riants, belonging to set T. 
  
 
 
 



Now we will list types of sample manifolds. 
Each sample manifold Ei is defined by an action 

Gq(n)0 × Yi → Yi 
on some manifold Yi (Yi is a typical fiber of 
Ei). There are 17 types of sample manifolds 
corresponding to q=1, i.e. having first order. 
For q=1 we have Gq(n)0= GL0n(R). All following 
constructions are local.  Let x1,…,xn be a 
coordinate system on X. Fix a point b∈X. We 
name sufficiently general in b section shortly 
by b-section.  
 

 
 
 
 



Type 1. Corresponds to trivial action of 
GL0n(R) on Rm(m≤n) and defines trivial bundle 
E1=Rm×X on X. A b-section s:X→E1 is given by m 
functions s1,…,sm such that Jacoby matrix 
(∂s/∂x)(b) has rank m. If m<n, canonical form 
of s (in corresponding coordinate system 
f1,…,fn on X) is s1=f1+λ1,…,sm=fm+λm.  If m=n, 
then we also have another canonical form  

si = fi+λi for i<n, sn = -fn+λn 

(λi are constants).  
 

 
 
 
 
 



Type 2. E2=(Rm-1×X)X+Λn+ is a direct sum of 
trivial bundle Rm-1×X and one-dimensional bun-
dle Λn+ of positive n-forms on X. A b-section 
s:X→E2 is given by m-1 functions s1,…,sm-1 such 
that Jacoby matrix (∂s/∂x)(b) has rank m-1, and 
any positive n-form π. Canonical form of s is 
s1=f1+λ1,…,sm-1=fm-1+λm-1, π =df1^…^dfn.   

 
Type 6. E6 is the positive projectivezation 

P+TX (this means that we identify vectors e and 
λe for positive λ) of the tangent space of X. 
Any section s has as canonical representative 
vector field ∂/∂f1 on X (rectifyability of vec-
tor field).   

 
 



Type 3. E3=(R×X)X+P+TX is a direct sum of 
one-dimensional trivial bundle and P+TX. 
A b-section s=(Ψ,⎯e) is given by condition 
∂Ψ/∂e(b)≠0. Canonical forms are  

Ψ= λ1±f1,e= ∂/∂f1. 
For further purposes for any 1-form ω on X 

and any natural k ≤ n denote by ω(k) the k-form 

43421
timesa

dd ωω^...^
 if k=2a and 

ωωω ^^...^
 if  k=2a+1. 43421

timesa

dd

 
 
 
 
 
 



Type 7(n=2a). E7 is the positive projective-
zation P+ΩX of the cotangent space of X. Any 
b-section s is represented by 1-form ω on X 
with the condition ω(n-1)(b)≠0. Using freedom in 
choosing ω and Darboux theorem, in convenient 
coorinate system hi on X we have  

ω = Σi=1ah2i-1dh2i, h1(b)≠0, hi(b)=0 for i>1. 
 

In coordinate system:  
f1 =h1–h1(b), f2i-1=h2i-1/h1 for 2≤i≤a, h2i = f2i 

for 1≤i≤a section s has to canonical repre-
sentative  

ω = df2+Σi=2af2i-1df2i. 
 
 
 
 



 
Type 8(n=2a+1). E8 is the positive projecti-

vezation P+ΩX of the cotangent space of X. Any 
b-section s is represented by 1-form ω on X 
with the condition ω(n)(b)≠0. Canonical forms 
are:  

ω=Σi=1af2i-1df2i±df2a+1. 
 

Type 4(n=2a). E4 =(R×X)X+ P+ΩX is a direct 
sum of one-dimensional trivial bundle and 
P+ΩX. A b-section s=(Ψ,⎯ω) is given by condi-
tion dΨ∧ω(n-1)≠0. Canonical forms are  

Ψ=λ1±f1, ω= df2 +Σi=2af2i-1df2i. 
 

 
 



Type 5(n=2a+1). E5 =(R×X)X+ P+ΩX is a direct 
sum of one-dimensional trivial bundle and 
P+ΩX. A b-section s=(Ψ,⎯ω) is given by condi-
tions  

dΨ∧ω(n)(b)≠0,(dω(2a-1)∧dΨ)(b) ≠ 0. 
Canonical forms are 

Ψ=λ2+f2, 
ω=Σi=1af2i-1df2i±df2a+1. 

 
Type 9. E9=P+TX+Λn+. A b-section is a pair 

(e, π) such that e(b)≠0. Canonical form is 
e=∂/∂fn, π=df1^…^dfn. 
 

Type 10(n=2a). E10 = P+ΩX +Λn+. A b-section is 
a pair (ω,π) such that  ω(n-1)(b)≠0. Canonical 
form is ω=df2+Σi=2af2i-1df2i, π= df1^…^dfn. 



 
Type 11(n=2a+1). E11 = P+ΩX +Λn+. A b-section 

is a pair (ω,π) such that ω(n)(b)≠0. Canonical 
forms are ω=Σi=1af2i-1df2i ±df2a+1, π=df1^…^dfn. 

 
Type 12. In this case   Y12 (typical fiber of 

E12) is equal to Rn – 0, and g∈GL0n(R) acts on 
v∈Rn by formula gv=det(g)(d-1)/ngv. Here d∈R is a 
parameter, and we call E12 quasitangent bundle 
and denote E12=T(d)X (E12 = TX when d=1). For 
each coordinate system in X we identify (non-
canonically) sections of T(d)X with vector 
fields on X. When d ≠ 1-n then a b-section e 
of T(d)X is defined by condition e(b)≠0 and has 
canonical form  e= ∂/∂f1. 
 



Case d = 1-n. There is a coordinate system hi 
in X such that e1>0, ei=0 for i>1. A b-section 
is defined by condition [∂e1/∂h1](b)≠0 and has 
canonical forms e1= 1±f1, ei=0 for i>1. 
 

Types 13 and 14. In this case  Y13,14 (typical 
fiber of E13,14) is equal to R*n – 0, and 
g∈GL0n(R) acts on v∈R*n by formula  

gv=det(g)(d-1)/n(g-1)Tv. 
Here d∈R is a parameter, and we call E13,14 qua-
sicotangent bundle and denote  

E13,14=Ω(d)X (E13,14 = ΩX when d=1). 
Case d=1 is well known so we assume d≠1. For 
each coordinate system in X we identify (non-
canonically) sections of T(d)X with 1-forms on 
X.  

 



 Type 13(n=2a). A b-section ω is defined by 
condition ω(n-1)(b)≠0 and has canonical form    
(1+f1)df2 + Σi=2af2i-1df2i. 

  
Type 14(n=2a+1). When (d-1)(a+1)≠n then a 

b-section ω is defined by condition ω(n)(b)≠0 
and has canonical forms ω= Σi=1af2i-1df2i ± df2a+1. 
In the case (d-1)(a+1)=n the definition of 
b-section is a little too long and we omit it; 
canonical forms are  

ω = (f2+λ2)(Σi=1af2i-1df2i±df2a+1), fi(b)=0. 
 
 
Type 18(n=4). E18 is a grassman manifold Egr 

of oriented 2-planes of R4. 
 
 



The definition of b-ection is a little too 
long and we omit it again. Any b-section s of 
Egr has canonical form: s is generated by vec-
tor fields eU = ∂/∂f4, dU= f4∂/∂f1+f3f4∂/∂f2+∂/∂f3. 
 

Type 19(n=3). E19 is a manifold consisting of 
oriented flags s=(l,p) in R3, namely each flag 
consists of oriented line l, contained in 
oriented 2-plane p. We denote E19 by Efl. To de-
fine b-section we note that any section 
s(x)=(l(x),p(x)) of Efl defines (nonuniquely)  
1-form ω(x) on X (p(x) annihilates ω(x)), and 
condition [ω^dω](b)≠0 defines b-section. The 
canonical forms for  b-section are:  

l(x)={∂/∂f1}, p(x)={∂/∂f1, ∂/∂f2 ± f1∂/∂f3}, 
fi(b)=0. 

 



Now we will list 3 types of sample manifolds 
for q=2. 

The group G2(n)0 has a natural projection on 
Affn (Affn is the affine group of R*n) and 
G2(n)0 acts on Y15,16,17 via this projection. 

Y16 = R*n (n=2a), Y17 = R*n (n=2a+1), and Affn 
acts on R*n in a standard way. Y15 is a mani-
fold of all hyperplanes (not necessarily con-
taining null) in R*n. We identify a section s 
of Ei (non-canonically) for i=16,17 with 
a 1-form ω∈ΩX, and for i=15 with a family of 
hyperplanes in ΩX.  
 

Type 15. Any local section s of E15 is 
a b-section. The canonical form of s is given 
by equation ∂/∂f1 =0 (∂/∂fi and fi form a coor-
dinate system in ΩX). 



 
 Type 16. A b-section of E16 is given by con-
dition ω(n)(b)≠0. Canonical forms are  

ω = ± f1df2 + Σi=2a f2i-1df2i. 
 

Type 17. A b-section of E17 is given by con-
dition ω(n-1)(b)≠0. Canonical form is  

ω = Σi=1af2i-1df2i + df2a+1. 
 
There are no special bundles for q≥3.  



 
 List once more all types of sample mani-
folds. 
 
q=1.  

E1=Rm×X,  E2=(Rm-1×X)X+Λn+,  
 E3=(R×X)X+P+TX,  E4,5=(R×X)X+P+ΩX, 
E6=P+TX,  E7,8=P+ΩX,  E9=P+TXX+Λn+, 

E10,11=P+ΩXX+Λn+,  E12=T(d)X,  E13,14=Ω(d)X,  
E18=Egr,  E19=Efl. 

 
q=2.  E15,  E16,  E17.  
 
 
 



Further discussion is valid for an arbitrary 
Lie pseudogroup PG of order q acting on arbi-
trary manifold P of dimension m + n and not 
only for bundles of geometric structures. Let 
us consider the spaces JkP and J∞P consisting 
respectively of jets of order k and infinite 
jets of submanifolds of dimension n in the ma-
nifold P. For k≥s, there is the natural pro-
jection π(s,k): JsP →JkP. The space J∞P has an 
ordinary weak topology of projecttive limit. 
The action of the pseudo-group PG may be natu-
rally extended to all manifolds JkP and to the 
space J∞P.  

 
 
 
 
 



Then, we have: 
 
(1) P has an open everywhere dense invariant 
set R0 consisting of regular points. 
 
(2) For each natural number k, there is an 
open everywhere dense invariant set Rk in JkP 
consisting of regular points. 
 
(3) There is some natural number K = K(n,m,q), 
depending only of n, m and q such that for 
each k≥K we have π-1(k,K)[RK]⊆Rk, i.e. each 
preimage of  each point from  RK  is regular. 
Let us define R∞ = π-1(k,K)[RK]. This set is 
open everywhere dense invariant domain in J∞P. 
 
 



(4) If the number of functionally independent 
differential invariants at point  z∈R∞ is not 
finite, there is a finite set (depending of z) 
of differential invariants F1,…Fs and n invariant 
differentiations D1, …,Dn, such that acting re-
peatedly by Di on Fj one gets complete set of 
differential invariants for each point close to 
point z (Tresse's Theorem). In a sense, for each 
point z∈ R∞ functions Fj and invariant differen-
tiations Di may be explicitly found (using dif-
ferentiations, algebraic operations and solution 
of systems of algebraic equations via implicit 
function theorem). The number Pz(k) of function-
ally independent differential invariants at 
point z having differential degree k is a poly-
nomial in k (for sufficiently large k). We call 
this polynomial the Hilbert's polynomial  of the 
point z. 



 
(5) The domain R∞ is a  disjoint union of fi-
nite number of open sets (atoms), every point 
of each atom having the same Hilbert polynomi-
al. 

In principle one can explicitly derive con-
ditions defining each atom from Lie pseudo-
group PG equations. In principle for each atom 
the corresponding Hilbert polynomial can be 
computed explicitly. Hilbert polynomials for 
all atoms are contained in the universal list 
of Hilbert polynomials. This list is finite 
and depends only on m, n and q, and does not 
depend on given pseudogroup PG. 

In principle one can explicitly find this 
list. (Explicitly means that one uses only fi-
nite number of differentiations and algebraic 
operations.) 



 
All results are true both in smooth and real 

analytic cases. 
 In real analytic case domain R∞ is a single 
atom and it's complement in J∞ is contained in 
a hypersurface. 
 

Many authors considered differential inva-
riants and Tresse's theorem. We mention both 
classical works of Lie,Cartan and Tresse, and 
modern works of Thomas T.Y., Ovsiannikov, Kum-
pera, Olver, Bryant, Ibragimov, Kruglikov & 
Lychagin, Yumaguzhin, Morozov among others. 
  

 
 
 



As pointed out in Arnold’s paper “Mathemati-
cal problems in classical physics” in Trends 
and Perspectives in Applied Mathematics (Appl. 
Math. Series, vol. 100), Springer, 1994, pp. 
1-20], and in book“Arnold's Problems”, Moscow: 
FAZIS, 2000; problem 1994-24, this theorem was 
formulated by Tresse, but it’s proof  has not 
yet been absorbed by modern mathematics.  

A. Kumpera  in the paper “Invariants differ-
rentiels d’un pseudo-groupe de Lie”, 
J. differential geometry, v.10(1975), 
p.p. 289-416 has found sufficient conditions 
for validity of Tresse’s theorem. Author has 
checked the validity of this conditions for 
the points of the domain R∞.   

 
 



This work uses some ideas, which was commu-
nicated to author by A. Khovanskii about 20 
years ago. Now they are published in the book 
A. Khovanskii, S. Chulkov, “The geometry of 

semigroup 
n
”, М., 2006.  0Z≤
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