Limit Algebras

Vladimir Remeslennikov

Sobolev Institute of Mathematics of the SB RAS, Omsk Branch, Russia

International Algebraic Workshop on "New Algebra-Logical Methods in Solution for Systems of Equations in Algebraic Structures",

August 16-22, 2009, Omsk, Russia

Let ${\cal A}$ be an algebraic structure (an algebra) in a functional language ${\cal L}$ (with no predicates).

Slogan

To have a good understanding of A it is necessary to investigate a structure of finitely generated algebras from the universal close **Ucl**(A) of A.

Theorem

Let \mathcal{A} be an equationally Noetherian algebra in a language \mathcal{L} (with no predicates). Then for a finitely generated algebra \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- $\ \ \, \bullet_{\forall}(\mathcal{A})\subseteq \mathrm{Th}_{\forall}(\mathcal{C}), \textit{ i.e., } \mathcal{C}\in \mathsf{Ucl}(\mathcal{A});$
- $2 Th_{\exists}(\mathcal{A}) \supseteq Th_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- \mathcal{C} is discriminated by \mathcal{A} ;
- **(3)** C is a limit algebra over A;
- O is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of equations in the language L.

The problem solved by Emil Artin

Let $f(x_1, ..., x_n)$ be a rational function over the real number field \mathbb{R} . If $f(x_1, ..., x_n) \ge 0$ for all $(x_1, ..., x_n)$ in the domain of *f* then the function $f(x_1, ..., x_n)$ may be represented as a sum of squares of rational functions over \mathbb{R} .

The attempt to solve this problem has made Artin and Schreier to introduce the notion of linear ordered fields and to work not only with \mathbb{R} , but also with linear ordered fields, in where universal theory contains the universal theory of \mathbb{R} .

Alfred Tarski asked

Problem 1: whether the free groups on two or more generators have the same first order theory,

Problem 2: and whether elementary theory of concrete free group is decidable.

The first attempt to give definition of limit group

Let F be a free nonabelian group and G finitely generated group. Then

 $G \in \mathbf{Ucl}(F) \iff G$ is a fully residually free group.

Let \mathbf{K}_{fg} be a class of all finite groups, and $\mathrm{Th}_{\forall}(\mathbf{K}_{fg})$ universal theory of the class \mathbf{K}_{fg} .

Theorem (Budkin, Gorbunov, 1975)

Finitely presented limit groups for \mathbf{K}_{fg} = Finitely presented residually finite groups.

Corollary

Universal theory of the class of all finite groups is more rich than universal theory of the class of all groups. Let $\mathbf{K}_{\rm ff}$ be a class of all finite fields, and $\mathcal{T}_{\rm ff} = \mathrm{Th}_{\forall}(\mathbf{K}_{\rm ff})$ universal theory of the class $\mathbf{K}_{\rm ff}$.

Definition

Fields, which are models of the theory $T_{\rm ff}$, are called quasifinite fields.

Theorem (Ax-Kochen, Ershov)

Universal theory of the class of all finite fields is more rich than universal theory of the class of all fields.

Fact

$$\operatorname{Th}_{\forall}(F_r) = \operatorname{Th}_{\forall}(F_s), \quad r, s \ge 2.$$

So, we may talk about the universal theory $T_{\text{free gr}} = \text{Th}_{\forall}(F)$ of non-abelian free group *F*.

Theorem (Remeslennikov, 1989)

Finitely generated group G is a model of the theory $T_{\text{free gr}}$ iff it is fully residually free.

• V. N. Remeslennikov, ∃-*free groups*, Sib. Math. J., **30 (6)**, 1989, pp. 998–1001.

Let F be free nonabelian group and G a finitely generated group.

Definition

A sequence of homomorphisms $f = (f_i : G \to F)$ is termed convergent (stable), if for any $g \in G$ elements $f_i(g)$ is eventually either always trivial or always non-trivial.

To a convergent sequences is associated the ker $f = \varinjlim f_i$ of elements that are eventually trivial.

An (algebraic) limit group (over F) is any group of the form

 $\Gamma = G/\ker f$

for $f = (f_i)$ a stable sequence of homomorphisms $f_i : G \to F$.

Example

A fully residually free group \longleftrightarrow An algebraic limit group.

Cayley Graph for the free group of rank 2

Graph $Cal(F_2)$ is a simplicial (combinatory) tree, and group F_2 acts on $Cal(F_2)$ by right multiplication with no fixed-points.

Figure: Acting by elements *a* and *b*.

Let $f = (f_i : G \to F)$ be a stable sequence of homomorphisms. Then *G* acts on Cayley graph *T* of *F* by the following way:

$$g \in G, v \in T \longrightarrow g(v) = f_i(g) \cdot v.$$

Details of this definition see in papers:

- H. J. R. Wilton, *An Introduction to Limit Groups*, Preprint, 2005.
- G. Champetier, V. Guirardel, *Limit groups as limits of free groups*, Israel J. Math., **146**, 2005, pp. 1–75.

Theorem (Kharlampovich, Miasnikov, 1998)

A finitely generated group is a limit group for free group iff it is a subgroup of iterated extensions of centralizers of a free group.

Definition

Let *G* be a group and C(g) centralizer of some element $g \in G$. Then we say that group

$$G_{\mathcal{C}}(g) = \langle G, t \mid \operatorname{rel}(G), th = ht, h \in \mathcal{C}(g)
angle$$

is extension of centralizer of G.

Another description of limit groups in terms of generalized doubles see in Sela's preprint, 2001.

- O. Kharlampovich, A. Myasnikov, Irreducible affine varieties over free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, 200 (2), 1998, pp. 472–516.
- O. Kharlampovich, A. Myasnikov, Irreducible affine varieties over free group II: Systems in trangular quasi-quadratic form and description of residually free groups, J. Algebra, 200(2), 1998, pp. 517–570.
- V. N. Remeslennikov, ∃-free groups, Sib. Math. J., 30 (6), 1989, pp. 998–1001.

Let $X = \{x_1, ..., x_n\}$ be a finite set of variables and T is a theory.

Definition

A set *p* of atomic or negations of atomic formulas in variables *X* is called an atomic type relative to a theory *T* if $p \cup T$ is consistent. A maximal atomic type in variables *X* with respect to inclusion is termed a complete atomic type of *T*.

If *p* is a complete atomic type in variables *X* then for every atomic formula φ in variables *X* either $\varphi \in p$ or $\neg \varphi \in p$.

Example

Let \mathcal{A} be an algebra in a language \mathcal{L} and $\bar{a} = (a_1, \ldots, a_n) \in \mathcal{A}^n$. Then the set $\operatorname{atp}^{\mathcal{A}}(\bar{a})$ of atomic or negations of atomic formulas in variables X that are true in \mathcal{A} under an interpretation $x_i \mapsto a_i$, $i = 1, \ldots, n$, is a complete atomic type relative to any theory Tsuch that $\mathcal{A} \in \operatorname{Mod}(T)$. Every complete atomic type *p* in variables *X* defines congruence \sim_p on the free algebra of terms in the language \mathcal{L} :

$$t \sim_{p} s \iff (t = s) \in p, \quad t, s \text{ are terms.}$$

Definition

We say that factor-algebra defined by congruence \sim_p is algebra defined by the type p.

Lemma

Let U be a universally axiomatized theory in \mathcal{L} . Then for any finitely generated algebra \mathcal{A} in the language \mathcal{L} the following conditions are equivalent:

- 1) $\mathcal{A} \in \mathrm{Mod}(U)$;
- **2)** A is defined by some complete atomic type p in U.

Notion of local submodel and construction of ultrapower of algebraic structures was introduced by A.I. Maltsev.

In our paper we give definition of limit algebra over an algebra ${\cal A}$ as limit of a direct system of local submodels of ${\cal A}.$

- A. I. Malcev, *Algebraic structures*, Nauka, Moscow, 1970.
- V. A. Gorbunov, Algebraic theory of quasivarieties, Nauchnaya Kniga, Novosibirsk, 1999; English transl., Plenum, 1998.
- E. Daniyarova, A. Miasnikov, V. Remeslennikov, *Unification theorems in algebraic geometry*, Algebra and Discrete Mathematics, **1**, 2008, and on arxiv.org.

Let \mathcal{A} be a finitely generated algebra in a finite language \mathcal{L} and n a positive integer number, $n \ge d$, where d is a minimal number of generates for \mathcal{A} .

 $AT_n(A) = \{atomic type \ p \text{ of rank } n \mid p \text{ defines algebra } A\}.$

We introduce the structure of ultra-metric space $\langle AT_n(A), d \rangle$ with the following metric *d*:

- d(p, p) = 0,
- if $p \neq q$, then $d(p,q) = \frac{1}{2^r}$, where *r* is the maximal natural number, such that $B_r(p) = B_r(q)$, but $B_{r+1}(p) \neq B_{r+1}(q)$.

Let $B_r(p) = \{ \text{all formulas } \Phi \in p \mid c(\Phi) \leq r \}$, where $c(\Phi)$ is an Gödel complexity of a formula Φ .

The compactification $\overline{\operatorname{AT}}_n(\mathcal{A})$ for $\operatorname{AT}_n(\mathcal{A})$ is defined standard way by means of Cauchy sequences. $\overline{\operatorname{AT}}_n(\mathcal{A})$ is compact ultra-metric space.

Let \overline{p} be a point in $\overline{\operatorname{AT}}_n(\mathcal{A})$ and $\{g_i\}$ Cauchy sequence, such that $\{\underline{g}_i\} = \overline{p}$. In standard way one can interprets \overline{p} as atomic type in $\operatorname{AT}_n(-)$ and prove that this type isn't depends on choice of Cauchy sequence $\{\underline{g}_i\}$. Thus, one can interprets every point from $\overline{\operatorname{AT}}_n(\mathcal{A})$ as atomic type from $\operatorname{AT}_n(-)$.

Theorem

Let \mathcal{A} be an equationally Noetherian algebra. Then every algebra, which is defined by atomic type from $\overline{\operatorname{AT}}_n(\mathcal{A})$, belongs to $\operatorname{Ucl}(\mathcal{A})_{\omega}$. And conversely, for each finitely generated an algebra \mathcal{C} in $\operatorname{Ucl}(\mathcal{A})$ there exists an atomic type p from $\overline{\operatorname{AT}}_n(\mathcal{A})$, such that the algebra, defined by p, is isomorphic to \mathcal{C} .

Definition

Algebra defined by an atomic type from $\overline{\operatorname{AT}}_n(\mathcal{A})$ is termed (atomic) limit algebra for \mathcal{A} .

Definition

The set $\{\overline{\operatorname{AT}}_n(\mathcal{A}), n \ge d\}$ of ultra-metric compact spaces is termed algebraic-geometrical boundary for \mathcal{A} .

Let $\ensuremath{\mathcal{A}}$ be an equationally Noetherian algebra.

Theorem (Finite Length)

Any sequence of proper epimorphisms of limit algebras for A,

$$\mathcal{C}_1 \to \mathcal{C}_2 \to \mathcal{C}_3 \to \dots,$$

is finite.

Theorem (Finite Width)

Let \mathcal{B} be a finitely generated algebra. Then there exists a finite set of limit algebras C_1, \ldots, C_t and epimorphisms

$$\mathcal{B} \to \mathcal{C}_1, \ldots, \mathcal{B} \to \mathcal{C}_t,$$

such that every morphism from \mathcal{B} to the algebra \mathcal{A} factorizes through one of these epimorphisms.

It seems interesting to investigate in details (atomic) limit algebras for the following algebras:

- free Lie algebra over a field;
- free associative algebra;
- free anti-commutative algebra;
- free semigroup;
- finitely generated abelian semigroup;
- free nilpotent group (algebra);
- free solvable group (algebra).