Introduction 0	Group of equations over profinite group 000	Equationally Noetherian	Example 0000	The end

Foundations of algebraic geometry over profinite groups

Svetlana Melesheva

Novosibirsk State University

Scientific adviser — Doctor of Science, professor Nikolay S.Romanovskiy

ション ふゆ メ リン イロン シックション

Introduction •	Group of equations over profinite group	Equationally Noetherian	Example 0000	The end

Profinite group is the projective limit of spectrum of finite groups. Profinite topology is naturally defined over profinite groups. Profinite groups are characterized as compact totally disconnected in the class of topological groups.

When we say about subgroups of profinite groups, we consider only closed subgroup.

Let G be a fixed profinite group. A profinite group H is termed a G-group if it contains subgroup, which is isomorphic to G. G-subgroup, G-homomorphism and other terms are defined for G-groups.

ション ふゆ メ リン イロン シックション

Introduction •	Group of equations over profinite group	Equationally Noetherian	Example 0000	The end

Profinite group is the projective limit of spectrum of finite groups. Profinite topology is naturally defined over profinite groups. Profinite groups are characterized as compact totally disconnected in the class of topological groups.

When we say about subgroups of profinite groups, we consider only closed subgroup.

Let G be a fixed profinite group. A profinite group H is termed a G-group if it contains subgroup, which is isomorphic to G. G-subgroup, G-homomorphism and other terms are defined for G-groups.

Introduction •	Group of equations over profinite group	Equationally Noetherian	Example 0000	The end

Profinite group is the projective limit of spectrum of finite groups. Profinite topology is naturally defined over profinite groups. Profinite groups are characterized as compact totally disconnected in the class of topological groups.

When we say about subgroups of profinite groups, we consider only closed subgroup.

Let G be a fixed profinite group. A profinite group H is termed a G-group if it contains subgroup, which is isomorphic to G. G-subgroup, G-homomorphism and other terms are defined for G-groups.

Introduction 0	Group of equations over profinite group •୦୦	Equationally Noetherian	Example 0000	The end
			c	

Let G be a profinite group and let $\langle x_1, \ldots, x_n \rangle$ be a free profinite group generated by $\{x_1, \ldots, x_n\}$. Let $F = G * \langle x_1, \ldots, x_n \rangle$, where * is a free profinite product.

Definition

Expression $v(x_1, \ldots, x_n) = 1$ is termed equation over G, where $v(x_1, \ldots, x_n) \in F$.

Notice, that in general the left part of equation is not a word over profinite group G on x_1, \ldots, x_n .

Definition

Introd 0	Group of equations over profinite grou	up Equationally Noetherian	Example 0000	The end
	Let G be a profinite group and $ $	$let < x_1, \ldots, x_n > be$ a	free	
	profinite group generated by $\{x_1$	$\{\ldots, x_n\}.$		
	Let $F = G * < x_1,, x_n >$, where	ere * is a free profinite	product.	

Expression $v(x_1, \ldots, x_n) = 1$ is termed equation over G, where $v(x_1, \ldots, x_n) \in F$.

Notice, that in general the left part of equation is not a word over profinite group G on x_1, \ldots, x_n .

Definition

Introduction 0	Group of equations over profinite group •୦୦	Equationally Noetherian	Example 0000	The end
			_	
Let G	G be a profinite group and let \cdot	$<$ x_1,\ldots,x_n $>$ be a	free	
profin	ite group generated by $\{x_1, \ldots\}$	$., x_n$.		
Let F	$f = G * < x_1, \dots, x_n >$, where	* is a free profinite	product.	

Expression $v(x_1, \ldots, x_n) = 1$ is termed equation over G, where $v(x_1, \ldots, x_n) \in F$.

Notice, that in general the left part of equation is not a word over profinite group G on x_1, \ldots, x_n .

Definition

Introduction 0	Group of equations over profinite group •00	Equationally Noetherian	Example 0000	The end
Let G	i be a profinite group and let \cdot	$< x_1, \ldots, x_n >$ be a	free	
profin	ite group generated by $\{x_1,\ldots\}$	$., x_n$.		
Let F	$f = G * < x_1, \dots, x_n >$, where	* is a free profinite	product.	

Expression $v(x_1, \ldots, x_n) = 1$ is termed equation over G, where $v(x_1, \ldots, x_n) \in F$.

Notice, that in general the left part of equation is not a word over profinite group G on x_1, \ldots, x_n .

Definition

Introd	uction

Equationally Noetherian

Example 0000

The end

Definition

The subset $S \subseteq G^n$ is called the algebraic set if S is the set of solutions of some system of equations on variables x_1, \ldots, x_n .

Denote that the set of solutions of equation $v(x_1, \ldots, x_n) = 1$ is closed in profinite topology, since it is the pre-image of 1 under the mapping $G^n \to G$ defined by $(x_1, \ldots, x_n) \mapsto v(x_1, \ldots, x_n)$.

Definition

We define Zariski topology on *G*^{*n*}, where algebraic sets form a prebasis of closed sets.

Let $I(S) \subseteq F$ be an annulator of an algebraic set S.

Intr	odu	cti	

Equationally Noetherian

Example .

The end

Definiti<u>on</u>

The subset $S \subseteq G^n$ is called the algebraic set if S is the set of solutions of some system of equations on variables x_1, \ldots, x_n .

Denote that the set of solutions of equation $v(x_1, \ldots, x_n) = 1$ is closed in profinite topology, since it is the pre-image of 1 under the mapping $G^n \to G$ defined by $(x_1, \ldots, x_n) \mapsto v(x_1, \ldots, x_n)$.

Definition

We define Zariski topology on *G*^{*n*}, where algebraic sets form a prebasis of closed sets.

Let $I(S) \subseteq F$ be an annulator of an algebraic set S.

Definition

Intr	odu	ion	

Equationally Noetherian

Example 0000

The end

Definition

The subset $S \subseteq G^n$ is called the algebraic set if S is the set of solutions of some system of equations on variables x_1, \ldots, x_n .

Denote that the set of solutions of equation $v(x_1, \ldots, x_n) = 1$ is closed in profinite topology, since it is the pre-image of 1 under the mapping $G^n \to G$ defined by $(x_1, \ldots, x_n) \mapsto v(x_1, \ldots, x_n)$.

Definition

We define Zariski topology on G^n , where algebraic sets form a prebasis of closed sets.

Let $I(S) \subseteq F$ be an annulator of an algebraic set S.

Definition

Intr	odu	ion	

Equationally Noetherian

Example 0000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The end

Definition

The subset $S \subseteq G^n$ is called the algebraic set if S is the set of solutions of some system of equations on variables x_1, \ldots, x_n .

Denote that the set of solutions of equation $v(x_1, \ldots, x_n) = 1$ is closed in profinite topology, since it is the pre-image of 1 under the mapping $G^n \to G$ defined by $(x_1, \ldots, x_n) \mapsto v(x_1, \ldots, x_n)$.

Definition

We define Zariski topology on G^n , where algebraic sets form a prebasis of closed sets.

Let $I(S) \subseteq F$ be an annulator of an algebraic set S.

Definition

Intr	odu	cti	

Equationally Noetherian

Example 7

The end

Definition

The subset $S \subseteq G^n$ is called the algebraic set if S is the set of solutions of some system of equations on variables x_1, \ldots, x_n .

Denote that the set of solutions of equation $v(x_1, \ldots, x_n) = 1$ is closed in profinite topology, since it is the pre-image of 1 under the mapping $G^n \to G$ defined by $(x_1, \ldots, x_n) \mapsto v(x_1, \ldots, x_n)$.

Definition

We define Zariski topology on G^n , where algebraic sets form a prebasis of closed sets.

Let $I(S) \subseteq F$ be an annulator of an algebraic set S.

Definition

Introduction	Group of equations over profinite group	Equa
	000	0000

Example 0000 The end

Definition

Any factor group F/H is termed a group of equations if:

• $H \cap G = 1;$

2 the mapping $x_i \rightarrow g_i$ can be continued to *G*-epimorphism $F/H \rightarrow G$.

There exists the maximal subgroup *H* satisfied these conditions and $F/H = \Gamma(G^n)$.

Theorem 1

Let a profinite group G be the projective limit of spectrum $\mathbb{G} = \{G_i, \varphi_j^i, I\}$ of finite groups G_i , where $\varphi_j^i : G_i \to G_j$ are epimorphisms. Then the groups $\Gamma(G_i^n) = \Gamma_i$ are finite and the canonical epimorphisms $\Gamma_i \to \Gamma_j$ exist $(i \ge j)$ and $\Gamma(G^n) = \varprojlim \Gamma(G_i^n)$.

Introduction	Group	of	equations	over	profinite	group
	000					

Example 0000

The end

Definition

Any factor group F/H is termed a group of equations if:

•
$$H \cap G = 1;$$

3 the mapping $x_i \rightarrow g_i$ can be continued to *G*-epimorphism $F/H \rightarrow G$.

There exists the maximal subgroup *H* satisfied these conditions and $F/H = \Gamma(G^n)$.

Theorem 1

Let a profinite group G be the projective limit of spectrum $\mathbb{G} = \{G_i, \varphi_j^i, I\}$ of finite groups G_i , where $\varphi_j^i : G_i \to G_j$ are epimorphisms. Then the groups $\Gamma(G_i^n) = \Gamma_i$ are finite and the canonical epimorphisms $\Gamma_i \to \Gamma_j$ exist $(i \ge j)$ and $\Gamma(G^n) = \varprojlim \Gamma(G_i^n)$.

Introduction	Group of equations over profinite	group
	000	

Example 0000

The end

Definition

Any factor group F/H is termed a group of equations if:

•
$$H \cap G = 1;$$

2 the mapping $x_i \rightarrow g_i$ can be continued to *G*-epimorphism $F/H \rightarrow G$.

There exists the maximal subgroup *H* satisfied these conditions and $F/H = \Gamma(G^n)$.

Theorem 1

Let a profinite group G be the projective limit of spectrum $\mathbb{G} = \{G_i, \varphi_j^i, I\}$ of finite groups G_i , where $\varphi_j^i : G_i \to G_j$ are epimorphisms. Then the groups $\Gamma(G_i^n) = \Gamma_i$ are finite and the canonical epimorphisms $\Gamma_i \to \Gamma_j$ exist $(i \ge j)$ and $\Gamma(G^n) = \varprojlim \Gamma(G_i^n).$

Introduction 0	Group of equations over profinite group	Equationally Noetherian •000	Example 0000	The end

A topologic space is termed Noetherian if every properly descending chain of its closed subsets is finite.

Definition

A group G is termed equationally Noetherian if for each natural number n and every system of equations $\{v_i(x_1, \ldots, x_n) = 1 \mid i \in I\}$ there exists a finite subsystem of equations $\{v_i(x_1, \ldots, x_n) = 1 \mid i \in J \subseteq I\}$ with the same set of solutions.

トロン 人間と 人間と 人間と 一日

Introduction 0	Group of equations over profinite group 000	Equationally Noetherian ●000	Example 0000	The end

A topologic space is termed Noetherian if every properly descending chain of its closed subsets is finite.

Definition

A group G is termed equationally Noetherian if for each natural number n and every system of equations $\{v_i(x_1, \ldots, x_n) = 1 \mid i \in I\}$ there exists a finite subsystem of equations $\{v_i(x_1, \ldots, x_n) = 1 \mid i \in J \subseteq I\}$ with the same set of solutions.

ション ふゆ メ リン イロン シックション

Introduction 0	Group of equations over profinite group	Equationally Noetherian 0●00	Example 0000	The end

A closed set $S \subseteq G^n$ is termed irreducible if $S = S_1 \cup S_2$, where S_1 and S_2 are closed sets, implies that either $S = S_1$ or $S = S_2$.

If *G* is equationally Noetherian then the affine space G^n is Noetherian and then any closed set $S \subseteq G^n$ can be expressed as a finite union of irreducible algebraic sets $S = S_1 \cup \ldots \cup S_k$, and if expression is uncancelled it is unique.

・ロト ・四ト ・ヨト ・ヨト

Introduction 0	Group of equations over profinite group	Equationally Noetherian 0●00	Example 0000	The end

A closed set $S \subseteq G^n$ is termed irreducible if $S = S_1 \cup S_2$, where S_1 and S_2 are closed sets, implies that either $S = S_1$ or $S = S_2$.

If *G* is equationally Noetherian then the affine space G^n is Noetherian and then any closed set $S \subseteq G^n$ can be expressed as a finite union of irreducible algebraic sets $S = S_1 \cup \ldots \cup S_k$, and if expression is uncancelled it is unique.

ション ふゆ メ リン イロン シックション

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 0000	The end

Let a profinite group G be a projective limit $\lim_{i \to i} G_i$ of finite groups G_i . We denote by $\pi(G) = \bigcup \pi(G_i)$ the set of prime divisors of orders of groups G_i .

Theorem 2

If the set $\pi(G)$ is infinite then the profinite group G is not equationally Noetherian of single variable.

Theorem 3

If G is a Abelian profinite group and the set $\pi(G)$ is finite then G is equationally Noetherian.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction 0	Group of equations over profinite group	Equationally Noetherian ००●०	Example 0000	The end

Let a profinite group G be a projective limit $\lim_{i \to i} G_i$ of finite groups G_i . We denote by $\pi(G) = \bigcup \pi(G_i)$ the set of prime divisors of orders of groups G_i .

Theorem 2

If the set $\pi(G)$ is infinite then the profinite group G is not equationally Noetherian of single variable.

Theorem 3

If G is a Abelian profinite group and the set $\pi(G)$ is finite then G is equationally Noetherian.

ヘロン 人間と 人間と 人間と

Introduction 0	Group of equations over profinite group	Equationally Noetherian ००●०	Example 0000	The end

Let a profinite group G be a projective limit $\varprojlim G_i$ of finite groups G_i . We denote by $\pi(G) = \bigcup \pi(G_i)$ the set of prime divisors of orders of groups G_i .

Theorem 2

If the set $\pi(G)$ is infinite then the profinite group G is not equationally Noetherian of single variable.

Theorem 3

If G is a Abelian profinite group and the set $\pi(G)$ is finite then G is equationally Noetherian.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Introduction 0	Group of equations over profinite group	Equationally Noetherian 000●	Example 0000	The end

Let $\mathbb{Z}_p[[t_\alpha \mid \alpha \in \mathfrak{A}]]$ be a ring of formal serieses of t_α over the ring of *p*-adic numbers. It is profinite ring and can be expressed as projective limit of factor rings by powers of maximal ideal $M = (p, t_\alpha \mid \alpha \in \mathfrak{A})$. Let *I* be a closed prime ideal of this ring, *R* is factor ring by *I*. The image of *M* has the same symbol in the ring R. Let $L_m(R)$ be a group of matrices from $GL_m(R)$ comparable with identity matrix by module *M*. It is pro-*p*-group.

Definition

Any pro-*p*-group enclosed in $L_m(R)$ is termed standard linear pro-*p*-group.

Theorem 4

The group $G = L_m(R)$ and any its subgroup are equationally Noetherian.

Introduction 0	Group of equations over profinite group	Equationally Noetherian 000●	Example 0000	The end

Let $\mathbb{Z}_p[[t_\alpha \mid \alpha \in \mathfrak{A}]]$ be a ring of formal serieses of t_α over the ring of *p*-adic numbers. It is profinite ring and can be expressed as projective limit of factor rings by powers of maximal ideal $M = (p, t_\alpha \mid \alpha \in \mathfrak{A})$. Let *I* be a closed prime ideal of this ring, *R* is factor ring by *I*. The image of *M* has the same symbol in the ring *R*. Let $L_m(R)$ be a group of matrices from $GL_m(R)$ comparable with identity matrix by module *M*. It is pro-*p*-group.

Definition

Any pro-*p*-group enclosed in $L_m(R)$ is termed standard linear pro-*p*-group.

Theorem 4

The group $G = L_m(R)$ and any its subgroup are equationally Noetherian.

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example ●000	The end

Let A and B be free abelian pro-p-groups with basis $\{a_0, a_1, \ldots\}$ and $\{b_0, b_1, \ldots\}$. Let C be a product of A and B in the variety of nilpotent groups of class 2.

H is subgroup C generated by left part of

$$[b_0, a_0] = 1, [b_1, a_0] = [b_1, a_1] = 1, \dots,$$
$$[b_n, a_0] = [b_n, a_1] = \dots = [b_n, a_n] = 1, \dots, \quad (1)$$

Let's view factor group D = C/H and system of equations

$$[x, a_0] = 1, [x, a_1] = 1, \dots$$

A finite subsystem of equations with the same set of solutions doesn't exist. Nilpotent of class 2 pro-*p*-group *D* is not equationally Noetherian

ション ふゆ メ リン ト キャット しょうくしゃ

Group of equations over profinite group	Equationally Noetherian	Example ●000	The end

Let C be a product of A and B in the variety of nilpotent groups of class 2.

H is subgroup C generated by left part of

$$[b_0, a_0] = 1, [b_1, a_0] = [b_1, a_1] = 1, \dots,$$

 $[b_n, a_0] = [b_n, a_1] = \dots = [b_n, a_n] = 1, \dots,$ (1)

Let's view factor group D = C/H and system of equations

$$[x, a_0] = 1, [x, a_1] = 1, \dots$$

A finite subsystem of equations with the same set of solutions doesn't exist. Nilpotent of class 2 pro-*p*-group *D* is not equationally Noetherian

Group of equations over profinite group	Equationally Noetherian	Example ●000	The end

Let C be a product of A and B in the variety of nilpotent groups of class 2.

H is subgroup C generated by left part of

$$[b_0, a_0] = 1, [b_1, a_0] = [b_1, a_1] = 1, \dots,$$

 $[b_n, a_0] = [b_n, a_1] = \dots = [b_n, a_n] = 1, \dots,$ (1)

Let's view factor group D = C/H and system of equations

$$[x, a_0] = 1, [x, a_1] = 1, \dots$$

A finite subsystem of equations with the same set of solutions doesn't exist. Nilpotent of class 2 pro-*p*-group *D* is not equationally Noetheriar

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example ●000	The end

Let C be a product of A and B in the variety of nilpotent groups of class 2.

H is subgroup C generated by left part of

$$[b_0, a_0] = 1, [b_1, a_0] = [b_1, a_1] = 1, \dots,$$

 $[b_n, a_0] = [b_n, a_1] = \dots = [b_n, a_n] = 1, \dots,$ (1)

Let's view factor group D = C/H and system of equations

$$[x, a_0] = 1, [x, a_1] = 1, \dots$$

A finite subsystem of equations with the same set of solutions doesn't exist.

Nilpotent of class 2 pro-*p*-group *D* is not equationally Noetherian.

Group of equations over profinite group	Example ●000	The end

Let C be a product of A and B in the variety of nilpotent groups of class 2.

H is subgroup C generated by left part of

$$[b_0, a_0] = 1, [b_1, a_0] = [b_1, a_1] = 1, \dots,$$

 $[b_n, a_0] = [b_n, a_1] = \dots = [b_n, a_n] = 1, \dots,$ (1)

Let's view factor group D = C/H and system of equations

$$[x, a_0] = 1, [x, a_1] = 1, \dots$$

A finite subsystem of equations with the same set of solutions doesn't exist. Nilpotent of class 2 pro-p-group D is not equationally Noetherian.

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 0●00	The end

Let $R = \mathbb{Z}_p[[t, y_1, y_2]]$ be a ring of formal serieses. $M = (p, t, y_1, y_2)$ is maximal ideal of ring R.

The set of 3×3 -matrices over R comparable with identity matrix by module M is a pro-p-group. Let $G = \langle c_1, c_2, d_1, d_2 \rangle$, where

$$c_{1} = \begin{pmatrix} 1 & 0 & 0 \\ t & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, c_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix},$$
$$d_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, d_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

ション ふゆ メ リン ト キャット しょうくしゃ

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 0●00	The end

Let $R = \mathbb{Z}_p[[t, y_1, y_2]]$ be a ring of formal serieses. $M = (p, t, y_1, y_2)$ is maximal ideal of ring R. The set of 3×3 -matrices over R comparable with identity matrix by module M is a pro-p-group.

Let $G = \langle c_1, c_2, d_1, d_2 \rangle$, where

$$c_{1} = \begin{pmatrix} 1 & 0 & 0 \\ t & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, c_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix},$$
$$d_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, d_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 0●00	The end

Let $R = \mathbb{Z}_p[[t, y_1, y_2]]$ be a ring of formal serieses. $M = (p, t, y_1, y_2)$ is maximal ideal of ring R. The set of 3×3 -matrices over R comparable with identity matrix by module M is a pro-p-group. Let $G = \langle c_1, c_2, d_1, d_2 \rangle$, where

$$c_{1} = \begin{pmatrix} 1 & 0 & 0 \\ t & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, c_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix},$$
$$d_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, d_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - y_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ション ふゆ メ リン ト キャット しょうくしゃ

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 00●0	The end

Let

$$a_0 = c_1, a_1 = [a_0^{-1}, d_1^{-1}], a_2 = [a_1^{-1}, d_1^{-1}], a_3 = [a_2^{-1}, d_1^{-1}], \dots$$

 $b_0 = c_2, b_1 = [d_2, b_0], b_2 = [d_2, b_1], b_3 = [d_2, b_2], \dots$

You can check that

$$a_n = \begin{pmatrix} 1 & 0 & 0 \\ ty_1^n & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, b_m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & ty_2^m & 1 \end{pmatrix}$$

and $[a_n, b_m] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -t^2 y_1^n y_2^m & 0 & 1 \end{pmatrix}.$

◆□▶ ◆課▶ ◆注▶ ◆注▶ 注目 のへぐ

Introduction O	Group of equations over profinite group	Equationally Noetherian	Example 00●0	The end

Let

$$a_0 = c_1, a_1 = [a_0^{-1}, d_1^{-1}], a_2 = [a_1^{-1}, d_1^{-1}], a_3 = [a_2^{-1}, d_1^{-1}], \dots$$

$$b_0 = c_2, b_1 = [d_2, b_0], b_2 = [d_2, b_1], b_3 = [d_2, b_2], \dots$$

You can check that

$$a_n = \begin{pmatrix} 1 & 0 & 0 \\ ty_1^n & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, b_m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & ty_2^m & 1 \end{pmatrix}$$

and $[a_n, b_m] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -t^2 y_1^n y_2^m & 0 & 1 \end{pmatrix}$.

Introduction O	Group of equations over profinite group	Equationally Noetherian	Example 00●0	The end

Let

$$a_0 = c_1, a_1 = [a_0^{-1}, d_1^{-1}], a_2 = [a_1^{-1}, d_1^{-1}], a_3 = [a_2^{-1}, d_1^{-1}], \dots$$

$$b_0 = c_2, b_1 = [d_2, b_0], b_2 = [d_2, b_1], b_3 = [d_2, b_2], \dots$$

You can check that

$$a_n = \begin{pmatrix} 1 & 0 & 0 \\ ty_1^n & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, b_m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & ty_2^m & 1 \end{pmatrix}$$

and $[a_n, b_m] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -t^2 y_1^n y_2^m & 0 & 1 \end{pmatrix}.$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ シック

Introduction 0	Group of equations over profinite group 000	Equationally Noetherian	Example 000●	The end

Notice that the set $\{[a_n, b_m] \mid n, m \in \mathbb{N}\}$ is linear independent over \mathbb{Z}_p .

Then group C from previous example is subgroup of group G. Let D and H be groups from previous example too. Since $H \subseteq Z(G)$, then $G/H \ge C/H = D$.

Centre-by-metabelian pro-p-group G/H with 4 generators is not equationally Noetherian.

Introduction 0	Group of equations over profinite group 000	Equationally Noetherian	Example 000●	The end

Notice that the set $\{[a_n, b_m] \mid n, m \in \mathbb{N}\}$ is linear independent over \mathbb{Z}_p .

Then group *C* from previous example is subgroup of group *G*. Let *D* and *H* be groups from previous example too. Since $H \subseteq Z(G)$, then $G/H \ge C/H = D$.

Centre-by-metabelian pro-p-group G/H with 4 generators is not equationally Noetherian.

ション ふゆ メ リン ト キャット しょうくしゃ

Introduction 0	Group of equations over profinite group	Equationally Noetherian	Example 000●	The end

Notice that the set $\{[a_n, b_m] \mid n, m \in \mathbb{N}\}$ is linear independent over \mathbb{Z}_p .

Then group *C* from previous example is subgroup of group *G*. Let *D* and *H* be groups from previous example too. Since $H \subseteq Z(G)$, then $G/H \ge C/H = D$.

Centre-by-metabelian pro-*p*-group G/H with 4 generators is not equationally Noetherian.

ション ふゆ メ リン ト キャット しょうくしゃ

Introduction	Group of equations over profinite group	Equa

Example T

The end

Thank you for your attention!